File: ipv6section.go

package info (click to toggle)
golang-github-seancfoley-ipaddress-go 1.5.4-3
  • links: PTS, VCS
  • area: main
  • in suites: experimental, forky, sid, trixie
  • size: 3,700 kB
  • sloc: makefile: 3
file content (2155 lines) | stat: -rw-r--r-- 93,782 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
//
// Copyright 2020-2022 Sean C Foley
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//

package ipaddr

import (
	"fmt"
	"math/big"
	"math/bits"
	"unsafe"

	"github.com/seancfoley/ipaddress-go/ipaddr/addrerr"
	"github.com/seancfoley/ipaddress-go/ipaddr/addrstr"
)

func createIPv6Section(segments []*AddressDivision) *IPv6AddressSection {
	return &IPv6AddressSection{
		ipAddressSectionInternal{
			addressSectionInternal{
				addressDivisionGroupingInternal{
					addressDivisionGroupingBase: addressDivisionGroupingBase{
						divisions: standardDivArray(segments),
						addrType:  ipv6Type,
						cache: &valueCache{
							stringCache: stringCache{
								ipv6StringCache: &ipv6StringCache{},
								ipStringCache:   &ipStringCache{},
							},
						},
					},
				},
			},
		},
	}
}

func newIPv6Section(segments []*AddressDivision) *IPv6AddressSection {
	return createIPv6Section(segments)
}

func newIPv6SectionParsed(segments []*AddressDivision, isMultiple bool) (res *IPv6AddressSection) {
	res = createIPv6Section(segments)
	res.isMult = isMultiple
	return
}

func newIPv6SectionFromMixed(segments []*AddressDivision) (res *IPv6AddressSection) {
	res = createIPv6Section(segments)
	res.initMultiple()
	return
}

func newPrefixedIPv6SectionParsed(segments []*AddressDivision, isMultiple bool, prefixLength PrefixLen, singleOnly bool) (res *IPv6AddressSection) {
	res = createIPv6Section(segments)
	res.isMult = isMultiple
	if prefixLength != nil {
		assignPrefix(prefixLength, segments, res.ToIP(), singleOnly, false, BitCount(len(segments)<<ipv6BitsToSegmentBitshift))
	}
	return
}

// NewIPv6Section constructs an IPv6 address or subnet section from the given segments.
func NewIPv6Section(segments []*IPv6AddressSegment) *IPv6AddressSection {
	return createIPv6SectionFromSegs(segments, nil)
}

// NewIPv6PrefixedSection constructs an IPv6 address or subnet section from the given segments and prefix length.
func NewIPv6PrefixedSection(segments []*IPv6AddressSegment, prefixLen PrefixLen) *IPv6AddressSection {
	return createIPv6SectionFromSegs(segments, prefixLen)
}

func createIPv6SectionFromSegs(orig []*IPv6AddressSegment, prefLen PrefixLen) (result *IPv6AddressSection) {
	divs, newPref, isMultiple := createDivisionsFromSegs(
		func(index int) *IPAddressSegment {
			return orig[index].ToIP()
		},
		len(orig),
		ipv6BitsToSegmentBitshift,
		IPv6BitsPerSegment,
		IPv6BytesPerSegment,
		IPv6MaxValuePerSegment,
		zeroIPv6Seg.ToIP(),
		zeroIPv6SegZeroPrefix.ToIP(),
		zeroIPv6SegPrefixBlock.ToIP(),
		prefLen)
	result = createIPv6Section(divs)
	result.prefixLength = newPref
	result.isMult = isMultiple
	return result
}

// NewIPv6SectionFromBigInt creates an IPv6 address section from the given big integer,
// returning an error if the value is too large for the given number of segments.
func NewIPv6SectionFromBigInt(val *big.Int, segmentCount int) (res *IPv6AddressSection, err addrerr.AddressValueError) {
	if val.Sign() < 0 {
		err = &addressValueError{
			addressError: addressError{key: "ipaddress.error.negative"},
		}
		return
	}
	return newIPv6SectionFromWords(val.Bits(), segmentCount, nil, false)
}

// NewIPv6SectionFromPrefixedBigInt creates an IPv6 address or prefix block section from the given big integer,
// returning an error if the value is too large for the given number of segments.
func NewIPv6SectionFromPrefixedBigInt(val *big.Int, segmentCount int, prefixLen PrefixLen) (res *IPv6AddressSection, err addrerr.AddressValueError) {
	if val.Sign() < 0 {
		err = &addressValueError{
			addressError: addressError{key: "ipaddress.error.negative"},
		}
		return
	}
	return newIPv6SectionFromWords(val.Bits(), segmentCount, prefixLen, false)
}

// NewIPv6SectionFromBytes constructs an IPv6 address from the given byte slice.
// The segment count is determined by the slice length, even if the segment count exceeds 8 segments.
func NewIPv6SectionFromBytes(bytes []byte) *IPv6AddressSection {
	res, _ := newIPv6SectionFromBytes(bytes, (len(bytes)+1)>>1, nil, false)
	return res
}

// NewIPv6SectionFromSegmentedBytes constructs an IPv6 address from the given byte slice.
// It allows you to specify the segment count for the supplied bytes.
// If the slice is too large for the given number of segments, an error is returned, although leading zeros are tolerated.
func NewIPv6SectionFromSegmentedBytes(bytes []byte, segmentCount int) (res *IPv6AddressSection, err addrerr.AddressValueError) {
	return newIPv6SectionFromBytes(bytes, segmentCount, nil, false)
}

// NewIPv6SectionFromPrefixedBytes constructs an IPv6 address or prefix block from the given byte slice and prefix length.
// It allows you to specify the segment count for the supplied bytes.
// If the slice is too large for the given number of segments, an error is returned, although leading zeros are tolerated.
func NewIPv6SectionFromPrefixedBytes(bytes []byte, segmentCount int, prefixLength PrefixLen) (res *IPv6AddressSection, err addrerr.AddressValueError) {
	return newIPv6SectionFromBytes(bytes, segmentCount, prefixLength, false)
}

func newIPv6SectionFromBytes(bytes []byte, segmentCount int, prefixLength PrefixLen, singleOnly bool) (res *IPv6AddressSection, err addrerr.AddressValueError) {
	if segmentCount < 0 {
		segmentCount = (len(bytes) + 1) >> 1
	}
	expectedByteCount := segmentCount << 1
	segments, err := toSegments(
		bytes,
		segmentCount,
		IPv6BytesPerSegment,
		IPv6BitsPerSegment,
		ipv6Network.getIPAddressCreator(),
		prefixLength)
	if err == nil {
		res = createIPv6Section(segments)
		if prefixLength != nil {
			assignPrefix(prefixLength, segments, res.ToIP(), singleOnly, false, BitCount(segmentCount<<ipv6BitsToSegmentBitshift))
		}
		if expectedByteCount == len(bytes) && len(bytes) > 0 {
			bytes = cloneBytes(bytes)
			res.cache.bytesCache = &bytesCache{lowerBytes: bytes}
			if !res.isMult { // not a prefix block
				res.cache.bytesCache.upperBytes = bytes
			}
		}
	}
	return
}

func newIPv6SectionFromWords(words []big.Word, segmentCount int, prefixLength PrefixLen, singleOnly bool) (res *IPv6AddressSection, err addrerr.AddressValueError) {
	if segmentCount < 0 {
		wordBitSize := bits.UintSize
		segmentCount = (len(words) * wordBitSize) >> 4
	}
	segments, err := toSegmentsFromWords(
		words,
		segmentCount,
		prefixLength)
	if err == nil {
		res = createIPv6Section(segments)
		if prefixLength != nil {
			assignPrefix(prefixLength, segments, res.ToIP(), singleOnly, false, BitCount(segmentCount<<ipv6BitsToSegmentBitshift))
		}
	}
	return
}

func toSegmentsFromWords(
	words []big.Word,
	segmentCount int,
	prefixLength PrefixLen) (segments []*AddressDivision, err addrerr.AddressValueError) {

	wordLen := len(words)
	wordBitSize := bits.UintSize
	segmentsPerWord := wordBitSize >> ipv6BitsToSegmentBitshift
	segments = createSegmentArray(segmentCount)
	var currentWord big.Word
	if wordLen > 0 {
		currentWord = words[0]
	}
	// start with little end
	for wordIndex, wordSegmentIndex, segmentIndex := 0, 0, segmentCount-1; ; segmentIndex-- {
		var value IPv6SegInt
		if wordIndex < wordLen {
			value = IPv6SegInt(currentWord)
			currentWord >>= uint(IPv6BitsPerSegment)
			wordSegmentIndex++
		}
		segmentPrefixLength := getSegmentPrefixLength(IPv6BitsPerSegment, prefixLength, segmentIndex)
		seg := NewIPv6PrefixedSegment(value, segmentPrefixLength)
		segments[segmentIndex] = seg.ToDiv()
		if wordSegmentIndex == segmentsPerWord {
			wordSegmentIndex = 0
			wordIndex++
			if wordIndex < wordLen {
				currentWord = words[wordIndex]
			}
		}
		if segmentIndex == 0 {
			// any remaining words should be zero
			var isErr bool
			if isErr = currentWord != 0; !isErr {
				for wordIndex++; wordIndex < wordLen; wordIndex++ {
					if isErr = words[wordIndex] != 0; isErr {
						break
					}
				}
			}
			if isErr {
				err = &addressValueError{
					addressError: addressError{key: "ipaddress.error.exceeds.size"},
					val:          int(words[wordIndex]),
				}
			}
			break
		}
	}
	return
}

// NewIPv6SectionFromUint64 constructs an IPv6 address section of the given segment count from the given values.
func NewIPv6SectionFromUint64(highBytes, lowBytes uint64, segmentCount int) (res *IPv6AddressSection) {
	return NewIPv6SectionFromPrefixedUint64(highBytes, lowBytes, segmentCount, nil)
}

// NewIPv6SectionFromPrefixedUint64 constructs an IPv6 address or prefix block section of the given segment count from the given values and prefix length.
func NewIPv6SectionFromPrefixedUint64(highBytes, lowBytes uint64, segmentCount int, prefixLength PrefixLen) (res *IPv6AddressSection) {
	if segmentCount < 0 {
		segmentCount = IPv6SegmentCount
	}
	segments := createSegmentsUint64(
		segmentCount,
		highBytes,
		lowBytes,
		IPv6BytesPerSegment,
		IPv6BitsPerSegment,
		ipv6Network.getIPAddressCreator(),
		prefixLength)
	res = createIPv6Section(segments)
	if prefixLength != nil {
		assignPrefix(prefixLength, segments, res.ToIP(), false, false, BitCount(segmentCount<<ipv6BitsToSegmentBitshift))
	}
	return
}

// NewIPv6SectionFromVals constructs an IPv6 address section of the given segment count from the given values.
func NewIPv6SectionFromVals(vals IPv6SegmentValueProvider, segmentCount int) (res *IPv6AddressSection) {
	res = NewIPv6SectionFromPrefixedRange(vals, nil, segmentCount, nil)
	return
}

// NewIPv6SectionFromPrefixedVals constructs an IPv6 address or prefix block section of the given segment count from the given values and prefix length.
func NewIPv6SectionFromPrefixedVals(vals IPv6SegmentValueProvider, segmentCount int, prefixLength PrefixLen) (res *IPv6AddressSection) {
	return NewIPv6SectionFromPrefixedRange(vals, nil, segmentCount, prefixLength)
}

// NewIPv6SectionFromRange constructs an IPv6 subnet section of the given segment count from the given values.
func NewIPv6SectionFromRange(vals, upperVals IPv6SegmentValueProvider, segmentCount int) (res *IPv6AddressSection) {
	res = NewIPv6SectionFromPrefixedRange(vals, upperVals, segmentCount, nil)
	return
}

// NewIPv6SectionFromPrefixedRange constructs an IPv6 subnet section of the given segment count from the given values and prefix length.
func NewIPv6SectionFromPrefixedRange(vals, upperVals IPv6SegmentValueProvider, segmentCount int, prefixLength PrefixLen) (res *IPv6AddressSection) {
	return newIPv6SectionFromPrefixedSingle(vals, upperVals, segmentCount, prefixLength, false)
}

func newIPv6SectionFromPrefixedSingle(vals, upperVals IPv6SegmentValueProvider, segmentCount int, prefixLength PrefixLen, singleOnly bool) (res *IPv6AddressSection) {
	if segmentCount < 0 {
		segmentCount = 0
	}
	segments, isMultiple := createSegments(
		WrapIPv6SegmentValueProvider(vals),
		WrapIPv6SegmentValueProvider(upperVals),
		segmentCount,
		IPv6BitsPerSegment,
		ipv6Network.getIPAddressCreator(),
		prefixLength)
	res = createIPv6Section(segments)
	res.isMult = isMultiple
	if prefixLength != nil {
		assignPrefix(prefixLength, segments, res.ToIP(), singleOnly, false, BitCount(segmentCount<<ipv6BitsToSegmentBitshift))
	}
	return
}

// NewIPv6SectionFromMAC constructs an IPv6 address section from a modified EUI-64 (Extended Unique Identifier) MAC address.
//
// If the supplied MAC address section is an 8-byte EUI-64, then it must match the required EUI-64 format of "xx-xx-ff-fe-xx-xx"
// with the "ff-fe" section in the middle.
//
// If the supplied MAC address section is a 6-byte MAC-48 or EUI-48, then the ff-fe pattern will be inserted when converting to IPv6.
//
// The constructor will toggle the MAC U/L (universal/local) bit as required with EUI-64.
//
// The error is IncompatibleAddressError when unable to join two MAC segments, at least one with ranged values, into an equivalent IPV6 segment range.
func NewIPv6SectionFromMAC(eui *MACAddress) (res *IPv6AddressSection, err addrerr.IncompatibleAddressError) {
	segments := createSegmentArray(4)
	if err = toIPv6SegmentsFromEUI(segments, 0, eui.GetSection(), nil); err != nil {
		return
	}
	res = createIPv6Section(segments)
	res.isMult = eui.isMultiple()
	return
}

// IPv6AddressSection represents a section of an IPv6 address comprising 0 to 8 IPv6 address segments.
// The zero values is a section with zero-segments.
type IPv6AddressSection struct {
	ipAddressSectionInternal
}

// Contains returns whether this is same type and version as the given address section and whether it contains all values in the given section.
//
// Sections must also have the same number of segments to be comparable, otherwise false is returned.
func (section *IPv6AddressSection) Contains(other AddressSectionType) bool {
	if section == nil {
		return other == nil || other.ToSectionBase() == nil
	}
	return section.contains(other)
}

// Equal returns whether the given address section is equal to this address section.
// Two address sections are equal if they represent the same set of sections.
// They must match:
//  - type/version: IPv6
//  - segment count
//  - segment value ranges
// Prefix lengths are ignored.
func (section *IPv6AddressSection) Equal(other AddressSectionType) bool {
	if section == nil {
		return other == nil || other.ToSectionBase() == nil
	}
	return section.equal(other)
}

// Compare returns a negative integer, zero, or a positive integer if this address section is less than, equal, or greater than the given item.
// Any address item is comparable to any other.  All address items use CountComparator to compare.
func (section *IPv6AddressSection) Compare(item AddressItem) int {
	return CountComparator.Compare(section, item)
}

// CompareSize compares the counts of two items, the number of individual sections represented.
//
// Rather than calculating counts with GetCount, there can be more efficient ways of determining whether one item represents more individual items than another.
//
// CompareSize returns a positive integer if this address section has a larger count than the item given, zero if they are the same, or a negative integer if the other has a larger count.
func (section *IPv6AddressSection) CompareSize(other AddressItem) int {
	if section == nil {
		if isNilItem(other) {
			return 0
		}
		// we have size 0, other has size >= 1
		return -1
	}
	return section.compareSize(other)
}

// GetIPVersion returns IPv6, the IP version of this address section.
func (section *IPv6AddressSection) GetIPVersion() IPVersion {
	return IPv6
}

// GetBitsPerSegment returns the number of bits comprising each segment in this section.  Segments in the same address section are equal length.
func (section *IPv6AddressSection) GetBitsPerSegment() BitCount {
	return IPv6BitsPerSegment
}

// GetBytesPerSegment returns the number of bytes comprising each segment in this section.  Segments in the same address section are equal length.
func (section *IPv6AddressSection) GetBytesPerSegment() int {
	return IPv6BytesPerSegment
}

// GetCount returns the count of possible distinct values for this item.
// If not representing multiple values, the count is 1,
// unless this is a division grouping with no divisions, or an address section with no segments, in which case it is 0.
//
// Use IsMultiple if you simply want to know if the count is greater than 1.
func (section *IPv6AddressSection) GetCount() *big.Int {
	if section == nil {
		return bigZero()
	}
	return section.cacheCount(func() *big.Int {
		return count(func(index int) uint64 {
			return section.GetSegment(index).GetValueCount()
		}, section.GetSegmentCount(), 2, 0x7fffffffffff)
	})
}

func (section *IPv6AddressSection) getCachedCount() *big.Int {
	if section == nil {
		return bigZero()
	}
	return section.cachedCount(func() *big.Int {
		return count(func(index int) uint64 {
			return section.GetSegment(index).GetValueCount()
		}, section.GetSegmentCount(), 2, 0x7fffffffffff)
	})
}

// IsMultiple returns  whether this section represents multiple values.
func (section *IPv6AddressSection) IsMultiple() bool {
	return section != nil && section.isMultiple()
}

// IsPrefixed returns whether this section has an associated prefix length.
func (section *IPv6AddressSection) IsPrefixed() bool {
	return section != nil && section.isPrefixed()
}

// GetBlockCount returns the count of distinct values in the given number of initial (more significant) segments.
func (section *IPv6AddressSection) GetBlockCount(segments int) *big.Int {
	return section.calcCount(func() *big.Int {
		return count(func(index int) uint64 {
			return section.GetSegment(index).GetValueCount()
		}, segments, 2, 0x7fffffffffff)
	})
}

// GetPrefixCount returns the number of distinct prefix values in this item.
//
// The prefix length is given by GetPrefixLen.
//
// If this has a non-nil prefix length, returns the number of distinct prefix values.
//
// If this has a nil prefix length, returns the same value as GetCount.
func (section *IPv6AddressSection) GetPrefixCount() *big.Int {
	return section.cachePrefixCount(func() *big.Int {
		return section.GetPrefixCountLen(section.getPrefixLen().bitCount())
	})
}

// GetPrefixCountLen returns the number of distinct prefix values in this item for the given prefix length.
func (section *IPv6AddressSection) GetPrefixCountLen(prefixLen BitCount) *big.Int {
	if prefixLen <= 0 {
		return bigOne()
	} else if bc := section.GetBitCount(); prefixLen >= bc {
		return section.GetCount()
	}
	networkSegmentIndex := getNetworkSegmentIndex(prefixLen, section.GetBytesPerSegment(), section.GetBitsPerSegment())
	hostSegmentIndex := getHostSegmentIndex(prefixLen, section.GetBytesPerSegment(), section.GetBitsPerSegment())
	return section.calcCount(func() *big.Int {
		return count(func(index int) uint64 {
			if (networkSegmentIndex == hostSegmentIndex) && index == networkSegmentIndex {
				return section.GetSegment(index).GetPrefixValueCount()
			}
			return section.GetSegment(index).GetValueCount()
		},
			networkSegmentIndex+1,
			2,
			0x7fffffffffff)
	})
}

// GetSegment returns the segment at the given index.
// The first segment is at index 0.
// GetSegment will panic given a negative index or an index matching or larger than the segment count.
func (section *IPv6AddressSection) GetSegment(index int) *IPv6AddressSegment {
	return section.getDivision(index).ToIPv6()
}

// ForEachSegment visits each segment in order from most-significant to least, the most significant with index 0, calling the given function for each, terminating early if the function returns true.
// Returns the number of visited segments.
func (section *IPv6AddressSection) ForEachSegment(consumer func(segmentIndex int, segment *IPv6AddressSegment) (stop bool)) int {
	divArray := section.getDivArray()
	if divArray != nil {
		for i, div := range divArray {
			if consumer(i, div.ToIPv6()) {
				return i + 1
			}
		}
	}
	return len(divArray)
}

// GetTrailingSection gets the subsection from the series starting from the given index.
// The first segment is at index 0.
func (section *IPv6AddressSection) GetTrailingSection(index int) *IPv6AddressSection {
	return section.GetSubSection(index, section.GetSegmentCount())
}

// GetSubSection gets the subsection from the series starting from the given index and ending just before the give endIndex.
// The first segment is at index 0.
func (section *IPv6AddressSection) GetSubSection(index, endIndex int) *IPv6AddressSection {
	return section.getSubSection(index, endIndex).ToIPv6()
}

// GetNetworkSection returns a subsection containing the segments with the network bits of the section.
// The returned section will have only as many segments as needed as determined by the existing CIDR network prefix length.
//
// If this series has no CIDR prefix length, the returned network section will
// be the entire series as a prefixed section with prefix length matching the address bit length.
func (section *IPv6AddressSection) GetNetworkSection() *IPv6AddressSection {
	return section.getNetworkSection().ToIPv6()
}

// GetNetworkSectionLen returns a subsection containing the segments with the network of the address section, the prefix bits according to the given prefix length.
// The returned section will have only as many segments as needed to contain the network.
//
// The new section will be assigned the given prefix length,
// unless the existing prefix length is smaller, in which case the existing prefix length will be retained.
func (section *IPv6AddressSection) GetNetworkSectionLen(prefLen BitCount) *IPv6AddressSection {
	return section.getNetworkSectionLen(prefLen).ToIPv6()
}

// GetHostSection returns a subsection containing the segments with the host of the address section, the bits beyond the CIDR network prefix length.
// The returned section will have only as many segments as needed to contain the host.
//
// If this series has no prefix length, the returned host section will be the full section.
func (section *IPv6AddressSection) GetHostSection() *IPv6AddressSection {
	return section.getHostSection().ToIPv6()
}

// GetHostSectionLen returns a subsection containing the segments with the host of the address section, the bits beyond the given CIDR network prefix length.
// The returned section will have only as many segments as needed to contain the host.
// The returned section will have an assigned prefix length indicating the beginning of the host.
func (section *IPv6AddressSection) GetHostSectionLen(prefLen BitCount) *IPv6AddressSection {
	return section.getHostSectionLen(prefLen).ToIPv6()
}

// GetNetworkMask returns the network mask associated with the CIDR network prefix length of this address section.
// If this section has no prefix length, then the all-ones mask is returned.
func (section *IPv6AddressSection) GetNetworkMask() *IPv6AddressSection {
	return section.getNetworkMask(ipv6Network).ToIPv6()
}

// GetHostMask returns the host mask associated with the CIDR network prefix length of this address section.
// If this section has no prefix length, then the all-ones mask is returned.
func (section *IPv6AddressSection) GetHostMask() *IPv6AddressSection {
	return section.getHostMask(ipv6Network).ToIPv6()
}

// CopySubSegments copies the existing segments from the given start index until but not including the segment at the given end index,
// into the given slice, as much as can be fit into the slice, returning the number of segments copied.
func (section *IPv6AddressSection) CopySubSegments(start, end int, segs []*IPv6AddressSegment) (count int) {
	start, end, targetStart := adjust1To1StartIndices(start, end, section.GetDivisionCount(), len(segs))
	segs = segs[targetStart:]
	return section.forEachSubDivision(start, end, func(index int, div *AddressDivision) {
		segs[index] = div.ToIPv6()
	}, len(segs))
}

// CopySegments copies the existing segments into the given slice,
// as much as can be fit into the slice, returning the number of segments copied.
func (section *IPv6AddressSection) CopySegments(segs []*IPv6AddressSegment) (count int) {
	return section.ForEachSegment(func(index int, seg *IPv6AddressSegment) (stop bool) {
		if stop = index >= len(segs); !stop {
			segs[index] = seg
		}
		return
	})
}

// GetSegments returns a slice with the address segments.  The returned slice is not backed by the same array as this section.
func (section *IPv6AddressSection) GetSegments() (res []*IPv6AddressSegment) {
	res = make([]*IPv6AddressSegment, section.GetSegmentCount())
	section.CopySegments(res)
	return
}

// Mask applies the given mask to all address sections represented by this secction, returning the result.
//
// If the sections do not have a comparable number of segments, an error is returned.
//
// If this represents multiple addresses, and applying the mask to all addresses creates a set of addresses
// that cannot be represented as a sequential range within each segment, then an error is returned.
func (section *IPv6AddressSection) Mask(other *IPv6AddressSection) (res *IPv6AddressSection, err addrerr.IncompatibleAddressError) {
	return section.maskPrefixed(other, true)
}

func (section *IPv6AddressSection) maskPrefixed(other *IPv6AddressSection, retainPrefix bool) (res *IPv6AddressSection, err addrerr.IncompatibleAddressError) {
	sec, err := section.mask(other.ToIP(), retainPrefix)
	if err == nil {
		res = sec.ToIPv6()
	}
	return
}

// BitwiseOr does the bitwise disjunction with this address section, useful when subnetting.
// It is similar to Mask which does the bitwise conjunction.
//
// The operation is applied to all individual addresses and the result is returned.
//
// If this represents multiple address sections, and applying the operation to all sections creates a set of sections
// that cannot be represented as a sequential range within each segment, then an error is returned.
func (section *IPv6AddressSection) BitwiseOr(other *IPv6AddressSection) (res *IPv6AddressSection, err addrerr.IncompatibleAddressError) {
	return section.bitwiseOrPrefixed(other, true)
}

func (section *IPv6AddressSection) bitwiseOrPrefixed(other *IPv6AddressSection, retainPrefix bool) (res *IPv6AddressSection, err addrerr.IncompatibleAddressError) {
	sec, err := section.bitwiseOr(other.ToIP(), retainPrefix)
	if err == nil {
		res = sec.ToIPv6()
	}
	return
}

// MatchesWithMask applies the mask to this address section and then compares the result with the given address section,
// returning true if they match, false otherwise.  To match, both the given section and mask must have the same number of segments as this section.
func (section *IPv6AddressSection) MatchesWithMask(other *IPv6AddressSection, mask *IPv6AddressSection) bool {
	return section.matchesWithMask(other.ToIP(), mask.ToIP())
}

// Subtract subtracts the given subnet sections from this subnet section, returning an array of sections for the result (the subnet sections will not be contiguous so an array is required).
//
// Subtract  computes the subnet difference, the set of address sections in this address section but not in the provided section.
// This is also known as the relative complement of the given argument in this subnet section.
//
// This is set subtraction, not subtraction of values.
func (section *IPv6AddressSection) Subtract(other *IPv6AddressSection) (res []*IPv6AddressSection, err addrerr.SizeMismatchError) {
	sections, err := section.subtract(other.ToIP())
	if err == nil {
		res = cloneTo(sections, (*IPAddressSection).ToIPv6)
	}
	return
}

// Intersect returns the subnet sections whose individual sections are found in both this and the given subnet section argument, or nil if no such sections exist.
//
// This is also known as the conjunction of the two sets of address sections.
//
// If the two sections have different segment counts, an error is returned.
func (section *IPv6AddressSection) Intersect(other *IPv6AddressSection) (res *IPv6AddressSection, err addrerr.SizeMismatchError) {
	sec, err := section.intersect(other.ToIP())
	if err == nil {
		res = sec.ToIPv6()
	}
	return
}

// GetLower returns the section in the range with the lowest numeric value,
// which will be the same section if it represents a single value.
// For example, for "1::1:2-3:4:5-6", the section "1::1:2:4:5" is returned.
func (section *IPv6AddressSection) GetLower() *IPv6AddressSection {
	return section.getLower().ToIPv6()
}

// GetUpper returns the section in the range with the highest numeric value,
// which will be the same section if it represents a single value.
// For example, for "1::1:2-3:4:5-6", the section "1::1:3:4:6" is returned.
func (section *IPv6AddressSection) GetUpper() *IPv6AddressSection {
	return section.getUpper().ToIPv6()
}

// ToZeroHost converts the address section to one in which all individual address sections have a host of zero,
// the host being the bits following the prefix length.
// If the address section has no prefix length, then it returns an all-zero address section.
//
// The returned section will have the same prefix and prefix length.
//
// This returns an error if the section is a range of address sections which cannot be converted to a range in which all sections have zero hosts,
// because the conversion results in a segment that is not a sequential range of values.
func (section *IPv6AddressSection) ToZeroHost() (*IPv6AddressSection, addrerr.IncompatibleAddressError) {
	res, err := section.toZeroHost(false)
	return res.ToIPv6(), err
}

// ToZeroHostLen converts the address section to one in which all individual sections have a host of zero,
// the host being the bits following the given prefix length.
// If this address section has the same prefix length, then the returned one will too, otherwise the returned section will have no prefix length.
//
// This returns an error if the section is a range of which cannot be converted to a range in which all sections have zero hosts,
// because the conversion results in a segment that is not a sequential range of values.
func (section *IPv6AddressSection) ToZeroHostLen(prefixLength BitCount) (*IPv6AddressSection, addrerr.IncompatibleAddressError) {
	res, err := section.toZeroHostLen(prefixLength)
	return res.ToIPv6(), err
}

// ToZeroNetwork converts the address section to one in which all individual address sections have a network of zero,
// the network being the bits within the prefix length.
// If the address section has no prefix length, then it returns an all-zero address section.
//
// The returned address section will have the same prefix length.
func (section *IPv6AddressSection) ToZeroNetwork() *IPv6AddressSection {
	return section.toZeroNetwork().ToIPv6()
}

// ToMaxHost converts the address section to one in which all individual address sections have a host of all one-bits, the max value,
// the host being the bits following the prefix length.
// If the address section has no prefix length, then it returns an all-ones section, the max address section.
//
// The returned address section will have the same prefix and prefix length.
//
// This returns an error if the address section is a range of address sections which cannot be converted to a range in which all sections have max hosts,
// because the conversion results in a segment that is not a sequential range of values.
func (section *IPv6AddressSection) ToMaxHost() (*IPv6AddressSection, addrerr.IncompatibleAddressError) {
	res, err := section.toMaxHost()
	return res.ToIPv6(), err
}

// ToMaxHostLen converts the address section to one in which all individual address sections have a host of all one-bits, the max host,
// the host being the bits following the given prefix length.
// If this section has the same prefix length, then the resulting section will too, otherwise the resulting section will have no prefix length.
//
// For instance, the zero host of "1.2.3.4" for the prefix length of 16 is the address "1.2.255.255".
//
// This returns an error if the section is a range of address sections which cannot be converted to a range in which all address sections have max hosts,
// because the conversion results in a segment that is not a sequential range of values.
func (section *IPv6AddressSection) ToMaxHostLen(prefixLength BitCount) (*IPv6AddressSection, addrerr.IncompatibleAddressError) {
	res, err := section.toMaxHostLen(prefixLength)
	return res.ToIPv6(), err
}

// ToPrefixBlock returns the section with the same prefix as this section while the remaining bits span all values.
// The returned section will be the block of all sections with the same prefix.
//
// If this section has no prefix, this section is returned.
func (section *IPv6AddressSection) ToPrefixBlock() *IPv6AddressSection {
	return section.toPrefixBlock().ToIPv6()
}

// ToPrefixBlockLen returns the section with the same prefix of the given length as this section while the remaining bits span all values.
// The returned section will be the block of all sections with the same prefix.
func (section *IPv6AddressSection) ToPrefixBlockLen(prefLen BitCount) *IPv6AddressSection {
	return section.toPrefixBlockLen(prefLen).ToIPv6()
}

// ToBlock creates a new block of address sections by changing the segment at the given index to have the given lower and upper value,
// and changing the following segments to be full-range.
func (section *IPv6AddressSection) ToBlock(segmentIndex int, lower, upper SegInt) *IPv6AddressSection {
	return section.toBlock(segmentIndex, lower, upper).ToIPv6()
}

// WithoutPrefixLen provides the same address section but with no prefix length.  The values remain unchanged.
func (section *IPv6AddressSection) WithoutPrefixLen() *IPv6AddressSection {
	if !section.IsPrefixed() {
		return section
	}
	return section.withoutPrefixLen().ToIPv6()
}

// SetPrefixLen sets the prefix length.
//
// A prefix length will not be set to a value lower than zero or beyond the bit length of the address section.
// The provided prefix length will be adjusted to these boundaries if necessary.
func (section *IPv6AddressSection) SetPrefixLen(prefixLen BitCount) *IPv6AddressSection {
	return section.setPrefixLen(prefixLen).ToIPv6()
}

// SetPrefixLenZeroed sets the prefix length.
//
// A prefix length will not be set to a value lower than zero or beyond the bit length of the address section.
// The provided prefix length will be adjusted to these boundaries if necessary.
//
// If this address section has a prefix length, and the prefix length is increased when setting the new prefix length, the bits moved within the prefix become zero.
// If this address section has a prefix length, and the prefix length is decreased when setting the new prefix length, the bits moved outside the prefix become zero.
//
// In other words, bits that move from one side of the prefix length to the other (bits moved into the prefix or outside the prefix) are zeroed.
//
// If the result cannot be zeroed because zeroing out bits results in a non-contiguous segment, an error is returned.
func (section *IPv6AddressSection) SetPrefixLenZeroed(prefixLen BitCount) (*IPv6AddressSection, addrerr.IncompatibleAddressError) {
	res, err := section.setPrefixLenZeroed(prefixLen)
	return res.ToIPv6(), err
}

// AdjustPrefixLen increases or decreases the prefix length by the given increment.
//
// A prefix length will not be adjusted lower than zero or beyond the bit length of the address section.
//
// If this address section has no prefix length, then the prefix length will be set to the adjustment if positive,
// or it will be set to the adjustment added to the bit count if negative.
func (section *IPv6AddressSection) AdjustPrefixLen(prefixLen BitCount) *IPv6AddressSection {
	return section.adjustPrefixLen(prefixLen).ToIPv6()
}

// AdjustPrefixLenZeroed increases or decreases the prefix length by the given increment while zeroing out the bits that have moved into or outside the prefix.
//
// A prefix length will not be adjusted lower than zero or beyond the bit length of the address section.
//
// If this address section has no prefix length, then the prefix length will be set to the adjustment if positive,
// or it will be set to the adjustment added to the bit count if negative.
//
// When prefix length is increased, the bits moved within the prefix become zero.
// When a prefix length is decreased, the bits moved outside the prefix become zero.
//
// If the result cannot be zeroed because zeroing out bits results in a non-contiguous segment, an error is returned.
func (section *IPv6AddressSection) AdjustPrefixLenZeroed(prefixLen BitCount) (*IPv6AddressSection, addrerr.IncompatibleAddressError) {
	res, err := section.adjustPrefixLenZeroed(prefixLen)
	return res.ToIPv6(), err
}

// AssignPrefixForSingleBlock returns the equivalent prefix block that matches exactly the range of values in this address section.
// The returned block will have an assigned prefix length indicating the prefix length for the block.
//
// There may be no such address section - it is required that the range of values match the range of a prefix block.
// If there is no such address section, then nil is returned.
func (section *IPv6AddressSection) AssignPrefixForSingleBlock() *IPv6AddressSection {
	return section.assignPrefixForSingleBlock().ToIPv6()
}

// AssignMinPrefixForBlock returns an equivalent address section, assigned the smallest prefix length possible,
// such that the prefix block for that prefix length is in this address section.
//
// In other words, this method assigns a prefix length to this address section matching the largest prefix block in this address section.
func (section *IPv6AddressSection) AssignMinPrefixForBlock() *IPv6AddressSection {
	return section.assignMinPrefixForBlock().ToIPv6()
}

// Iterator provides an iterator to iterate through the individual address sections of this address section.
//
// When iterating, the prefix length is preserved.  Remove it using WithoutPrefixLen prior to iterating if you wish to drop it from all individual address sections.
//
// Call IsMultiple to determine if this instance represents multiple address sections, or GetCount for the count.
func (section *IPv6AddressSection) Iterator() Iterator[*IPv6AddressSection] {
	if section == nil {
		return ipv6SectionIterator{nilSectIterator()}
	}
	return ipv6SectionIterator{section.sectionIterator(nil)}
}

// PrefixIterator provides an iterator to iterate through the individual prefixes of this address section,
// each iterated element spanning the range of values for its prefix.
//
// It is similar to the prefix block iterator, except for possibly the first and last iterated elements, which might not be prefix blocks,
// instead constraining themselves to values from this address section.
//
// If the series has no prefix length, then this is equivalent to Iterator.
func (section *IPv6AddressSection) PrefixIterator() Iterator[*IPv6AddressSection] {
	return ipv6SectionIterator{section.prefixIterator(false)}
}

// PrefixBlockIterator provides an iterator to iterate through the individual prefix blocks, one for each prefix of this address section.
// Each iterated address section will be a prefix block with the same prefix length as this address section.
//
// If this address section has no prefix length, then this is equivalent to Iterator.
func (section *IPv6AddressSection) PrefixBlockIterator() Iterator[*IPv6AddressSection] {
	return ipv6SectionIterator{section.prefixIterator(true)}
}

// BlockIterator Iterates through the address sections that can be obtained by iterating through all the upper segments up to the given segment count.
// The segments following remain the same in all iterated sections.
func (section *IPv6AddressSection) BlockIterator(segmentCount int) Iterator[*IPv6AddressSection] {
	return ipv6SectionIterator{section.blockIterator(segmentCount)}
}

// SequentialBlockIterator iterates through the sequential address sections that make up this address section.
//
// Practically, this means finding the count of segments for which the segments that follow are not full range, and then using BlockIterator with that segment count.
//
// Use GetSequentialBlockCount to get the number of iterated elements.
func (section *IPv6AddressSection) SequentialBlockIterator() Iterator[*IPv6AddressSection] {
	return ipv6SectionIterator{section.sequentialBlockIterator()}
}

// GetZeroSegments returns the list of consecutive zero-segments.
// Each element in the list will be an segment index and a total segment count for which
// that count of consecutive segments starting from that index are all zero.
func (section *IPv6AddressSection) GetZeroSegments() SegmentSequenceList {
	return section.getZeroSegments(false)
}

// GetZeroRangeSegments returns the list of consecutive zero and zero prefix block segments.
// Each element in the list will be an segment index and a total segment count for which
// that count of consecutive segments starting from that index are all zero or a prefix block segment with lowest segment value zero.
func (section *IPv6AddressSection) GetZeroRangeSegments() SegmentSequenceList {
	if section.IsPrefixed() {
		return section.getZeroSegments(true)
	}
	return section.getZeroSegments(false)
}

// GetCompressIndexAndCount chooses a single segment to be compressed in an IPv6 string. If no segment could be chosen then count is 0.
// If options is nil, no segment will be chosen.  If createMixed is true, will assume the address string will be mixed IPv6/v4.
func (section *IPv6AddressSection) getCompressIndexAndCount(options addrstr.CompressOptions, createMixed bool) (maxIndex, maxCount int) {
	if options != nil {
		rangeSelection := options.GetCompressionChoiceOptions()
		var compressibleSegs SegmentSequenceList
		if rangeSelection.CompressHost() {
			compressibleSegs = section.GetZeroRangeSegments()
		} else {
			compressibleSegs = section.GetZeroSegments()
		}
		maxCount = 0
		segmentCount := section.GetSegmentCount()
		//compressMixed := createMixed && options.GetMixedCompressionOptions().compressMixed(section)
		compressMixed := createMixed && compressMixedSect(options.GetMixedCompressionOptions(), section)
		preferHost := rangeSelection == addrstr.HostPreferred
		preferMixed := createMixed && (rangeSelection == addrstr.MixedPreferred)
		for i := compressibleSegs.size() - 1; i >= 0; i-- {
			rng := compressibleSegs.getRange(i)
			index := rng.index
			count := rng.length
			if createMixed {
				//so here we shorten the range to exclude the mixed part if necessary
				mixedIndex := IPv6MixedOriginalSegmentCount
				if !compressMixed ||
					index > mixedIndex || index+count < segmentCount { //range does not include entire mixed part.  We never compress only part of a mixed part.
					//the compressible range must stop at the mixed part
					if val := mixedIndex - index; val < count {
						count = val
					}
				}
			}
			//select this range if is the longest
			if count > 0 && count >= maxCount && (options.CompressSingle() || count > 1) {
				maxIndex = index
				maxCount = count
			}
			if preferHost && section.IsPrefixed() &&
				(BitCount(index+count)*section.GetBitsPerSegment()) > section.getNetworkPrefixLen().bitCount() { //this range contains the host
				//Since we are going backwards, this means we select as the maximum any zero-segment that includes the host
				break
			}
			if preferMixed && index+count >= segmentCount { //this range contains the mixed section
				//Since we are going backwards, this means we select to compress the mixed segment
				break
			}
		}
	}
	return
}

func compressMixedSect(m addrstr.MixedCompressionOptions, addressSection *IPv6AddressSection) bool {
	switch m {
	case addrstr.AllowMixedCompression:
		return true
	case addrstr.NoMixedCompression:
		return false
	case addrstr.MixedCompressionNoHost:
		return !addressSection.IsPrefixed()
	case addrstr.MixedCompressionCoveredByHost:
		if addressSection.IsPrefixed() {
			mixedDistance := IPv6MixedOriginalSegmentCount
			mixedCount := addressSection.GetSegmentCount() - mixedDistance
			if mixedCount > 0 {
				return (BitCount(mixedDistance) * addressSection.GetBitsPerSegment()) >= addressSection.getNetworkPrefixLen().bitCount()
			}
		}
		return true
	default:
		return true
	}
}

func (section *IPv6AddressSection) getZeroSegments(includeRanges bool) SegmentSequenceList {
	divisionCount := section.GetSegmentCount()
	includeRanges = includeRanges && section.IsPrefixBlock() && section.GetPrefixLen().bitCount() < section.GetBitCount()
	var currentIndex, currentCount, rangeCount int
	var ranges [IPv6SegmentCount >> 1]SegmentSequence
	if includeRanges {
		bitsPerSegment := section.GetBitsPerSegment()
		networkIndex := getNetworkSegmentIndex(section.getPrefixLen().bitCount(), section.GetBytesPerSegment(), bitsPerSegment)
		i := 0
		for ; i <= networkIndex; i++ {
			division := section.GetSegment(i)
			isCompressible := division.IsZero() ||
				(includeRanges && division.IsPrefixed() && division.isSinglePrefixBlock(0, division.getUpperDivisionValue(), division.getDivisionPrefixLength().bitCount()))
			if isCompressible {
				currentCount++
				if currentCount == 1 {
					currentIndex = i
				}
			} else if currentCount > 0 {
				ranges[rangeCount] = SegmentSequence{index: currentIndex, length: currentCount}
				rangeCount++
				currentCount = 0
			}
		}
		if currentCount > 0 {
			// add all segments past the network segment index to the current sequence
			ranges[rangeCount] = SegmentSequence{index: currentIndex, length: currentCount + divisionCount - i}
			rangeCount++
		} else if i < divisionCount {
			// all segments past the network segment index are a new sequence
			ranges[rangeCount] = SegmentSequence{index: i, length: divisionCount - i}
			rangeCount++
		} // else the very last segment was a network segment, and a prefix block segment, but the lowest segment value is not zero, eg ::100/120
	} else {
		for i := 0; i < divisionCount; i++ {
			division := section.GetSegment(i)
			if division.IsZero() {
				currentCount++
				if currentCount == 1 {
					currentIndex = i
				}
			} else if currentCount > 0 {
				ranges[rangeCount] = SegmentSequence{index: currentIndex, length: currentCount}
				rangeCount++
				currentCount = 0
			}
		}
		if currentCount > 0 {
			ranges[rangeCount] = SegmentSequence{index: currentIndex, length: currentCount}
			rangeCount++
		} else if rangeCount == 0 {
			return SegmentSequenceList{}
		}
	}
	return SegmentSequenceList{ranges[:rangeCount]}
}

// IncrementBoundary returns the item that is the given increment from the range boundaries of this item.
//
// If the given increment is positive, adds the value to the highest (GetUpper) in the range to produce a new item.
// If the given increment is negative, adds the value to the lowest (GetLower) in the range to produce a new item.
// If the increment is zero, returns this.
//
// If this represents just a single value, this item is simply incremented by the given increment value, positive or negative.
//
// On overflow or underflow, IncrementBoundary returns nil.
func (section *IPv6AddressSection) IncrementBoundary(increment int64) *IPv6AddressSection {
	return section.incrementBoundary(increment).ToIPv6()
}

func getIPv6MaxValue(segmentCount int) *big.Int {
	return new(big.Int).Set(ipv6MaxValues[segmentCount])
}

var ipv6MaxValues = []*big.Int{
	bigZero(),
	new(big.Int).SetUint64(IPv6MaxValuePerSegment),
	new(big.Int).SetUint64(0xffffffff),
	new(big.Int).SetUint64(0xffffffffffff),
	maxInt(4),
	maxInt(5),
	maxInt(6),
	maxInt(7),
	maxInt(8),
}

func maxInt(segCount int) *big.Int {
	res := new(big.Int).SetUint64(1)
	return res.Lsh(res, 16*uint(segCount)).Sub(res, bigOneConst())
}

// Increment returns the item that is the given increment upwards into the range,
// with the increment of 0 returning the first in the range.
//
// If the increment i matches or exceeds the range count c, then i - c + 1
// is added to the upper item of the range.
// An increment matching the count gives you the item just above the highest in the range.
//
// If the increment is negative, it is added to the lowest of the range.
// To get the item just below the lowest of the range, use the increment -1.
//
// If this represents just a single value, the item is simply incremented by the given increment, positive or negative.
//
// If this item represents multiple values, a positive increment i is equivalent i + 1 values from the iterator and beyond.
// For instance, a increment of 0 is the first value from the iterator, an increment of 1 is the second value from the iterator, and so on.
// An increment of a negative value added to the count is equivalent to the same number of iterator values preceding the last value of the iterator.
// For instance, an increment of count - 1 is the last value from the iterator, an increment of count - 2 is the second last value, and so on.
//
// On overflow or underflow, Increment returns nil.
func (section *IPv6AddressSection) Increment(increment int64) *IPv6AddressSection {
	if increment == 0 && !section.isMultiple() {
		return section
	}
	lowerValue := section.GetValue()
	upperValue := section.GetUpperValue()
	count := section.GetCount()
	var bigIncrement big.Int
	bigIncrement.SetInt64(increment)
	isOverflow := checkOverflowBig(increment, &bigIncrement, lowerValue, upperValue, count, func() *big.Int { return getIPv6MaxValue(section.GetSegmentCount()) })
	if isOverflow {
		return nil
	}
	prefixLength := section.getPrefixLen()
	result := fastIncrement(
		section.ToSectionBase(),
		increment,
		ipv6Network.getIPAddressCreator(),
		section.getLower,
		section.getUpper,
		prefixLength)
	if result != nil {
		return result.ToIPv6()
	}
	bigIncrement.SetInt64(increment)
	return incrementBig(
		section.ToSectionBase(),
		increment,
		&bigIncrement,
		ipv6Network.getIPAddressCreator(),
		section.getLower,
		section.getUpper,
		prefixLength).ToIPv6()
}

// SpanWithPrefixBlocks returns an array of prefix blocks that spans the same set of individual address sections as this section.
//
// Unlike SpanWithPrefixBlocksTo, the result only includes blocks that are a part of this section.
func (section *IPv6AddressSection) SpanWithPrefixBlocks() []*IPv6AddressSection {
	if section.IsSequential() {
		if section.IsSinglePrefixBlock() {
			return []*IPv6AddressSection{section}
		}
		wrapped := wrapIPSection(section.ToIP())
		spanning := getSpanningPrefixBlocks(wrapped, wrapped)
		return cloneToIPv6Sections(spanning)
	}
	wrapped := wrapIPSection(section.ToIP())
	return cloneToIPv6Sections(spanWithPrefixBlocks(wrapped))
}

// SpanWithPrefixBlocksTo returns the smallest slice of prefix block subnet sections that span from this section to the given section.
//
// If the given section has a different segment count, an error is returned.
//
// The resulting slice is sorted from lowest address value to highest, regardless of the size of each prefix block.
func (section *IPv6AddressSection) SpanWithPrefixBlocksTo(other *IPv6AddressSection) ([]*IPv6AddressSection, addrerr.SizeMismatchError) {
	if err := section.checkSectionCount(other.ToIP()); err != nil {
		return nil, err
	}
	return cloneToIPv6Sections(
		getSpanningPrefixBlocks(
			wrapIPSection(section.ToIP()),
			wrapIPSection(other.ToIP()),
		),
	), nil
}

// SpanWithSequentialBlocks produces the smallest slice of sequential blocks that cover the same set of sections as this.
//
// This slice can be shorter than that produced by SpanWithPrefixBlocks and is never longer.
//
// Unlike SpanWithSequentialBlocksTo, this method only includes values that are a part of this section.
func (section *IPv6AddressSection) SpanWithSequentialBlocks() []*IPv6AddressSection {
	if section.IsSequential() {
		return []*IPv6AddressSection{section}
	}
	wrapped := wrapIPSection(section.ToIP())
	return cloneToIPv6Sections(spanWithSequentialBlocks(wrapped))
}

// SpanWithSequentialBlocksTo produces the smallest slice of sequential block address sections that span from this section to the given section.
func (section *IPv6AddressSection) SpanWithSequentialBlocksTo(other *IPv6AddressSection) ([]*IPv6AddressSection, addrerr.SizeMismatchError) {
	if err := section.checkSectionCount(other.ToIP()); err != nil {
		return nil, err
	}
	return cloneToIPv6Sections(
		getSpanningSequentialBlocks(
			wrapIPSection(section.ToIP()),
			wrapIPSection(other.ToIP()),
		),
	), nil
}

// CoverWithPrefixBlockTo returns the minimal-size prefix block section that covers all the address sections spanning from this to the given section.
//
// If the other section has a different segment count, an error is returned.
func (section *IPv6AddressSection) CoverWithPrefixBlockTo(other *IPv6AddressSection) (*IPv6AddressSection, addrerr.SizeMismatchError) {
	res, err := section.coverWithPrefixBlockTo(other.ToIP())
	return res.ToIPv6(), err
}

// CoverWithPrefixBlock returns the minimal-size prefix block that covers all the individual address sections in this section.
// The resulting block will have a larger count than this, unless this section is already a prefix block.
func (section *IPv6AddressSection) CoverWithPrefixBlock() *IPv6AddressSection {
	return section.coverWithPrefixBlock().ToIPv6()
}

func (section *IPv6AddressSection) checkSectionCounts(sections []*IPv6AddressSection) addrerr.SizeMismatchError {
	segCount := section.GetSegmentCount()
	length := len(sections)
	for i := 0; i < length; i++ {
		section2 := sections[i]
		if section2 == nil {
			continue
		}
		if section2.GetSegmentCount() != segCount {
			return &sizeMismatchError{incompatibleAddressError{addressError{key: "ipaddress.error.sizeMismatch"}}}
		}
	}
	return nil
}

//
// MergeToSequentialBlocks merges this with the list of sections to produce the smallest array of sequential blocks.
//
// The resulting slice is sorted from lowest address value to highest, regardless of the size of each prefix block.
func (section *IPv6AddressSection) MergeToSequentialBlocks(sections ...*IPv6AddressSection) ([]*IPv6AddressSection, addrerr.SizeMismatchError) {
	if err := section.checkSectionCounts(sections); err != nil {
		return nil, err
	}
	series := cloneIPv6Sections(section, sections)
	blocks := getMergedSequentialBlocks(series)
	return cloneToIPv6Sections(blocks), nil
}

//
// MergeToPrefixBlocks merges this section with the list of sections to produce the smallest array of prefix blocks.
//
// The resulting slice is sorted from lowest value to highest, regardless of the size of each prefix block.
func (section *IPv6AddressSection) MergeToPrefixBlocks(sections ...*IPv6AddressSection) ([]*IPv6AddressSection, addrerr.SizeMismatchError) {
	if err := section.checkSectionCounts(sections); err != nil {
		return nil, err
	}
	series := cloneIPv6Sections(section, sections)
	blocks := getMergedPrefixBlocks(series)
	return cloneToIPv6Sections(blocks), nil
}

// ReverseBits returns a new section with the bits reversed.  Any prefix length is dropped.
//
// If the bits within a single segment cannot be reversed because the segment represents a range,
// and reversing the segment values results in a range that is not contiguous, this returns an error.
//
// In practice this means that to be reversible, a range must include all values except possibly the largest and/or smallest, which reverse to themselves.
//
// If perByte is true, the bits are reversed within each byte, otherwise all the bits are reversed.
func (section *IPv6AddressSection) ReverseBits(perByte bool) (*IPv6AddressSection, addrerr.IncompatibleAddressError) {
	res, err := section.reverseBits(perByte)
	return res.ToIPv6(), err
}

// ReverseBytes returns a new section with the bytes reversed.  Any prefix length is dropped.
//
// If the bytes within a single segment cannot be reversed because the segment represents a range,
// and reversing the segment values results in a range that is not contiguous, then this returns an error.
//
// In practice this means that to be reversible, a range must include all values except possibly the largest and/or smallest, which reverse to themselves.
func (section *IPv6AddressSection) ReverseBytes() (*IPv6AddressSection, addrerr.IncompatibleAddressError) {
	res, err := section.reverseBytes(false)
	return res.ToIPv6(), err
}

// ReverseSegments returns a new section with the segments reversed.
func (section *IPv6AddressSection) ReverseSegments() *IPv6AddressSection {
	if section.GetSegmentCount() <= 1 {
		if section.IsPrefixed() {
			return section.WithoutPrefixLen()
		}
		return section
	}
	res, _ := section.reverseSegments(
		func(i int) (*AddressSegment, addrerr.IncompatibleAddressError) {
			return section.GetSegment(i).WithoutPrefixLen().ToSegmentBase(), nil
		},
	)
	return res.ToIPv6()
}

// Append creates a new section by appending the given section to this section.
func (section *IPv6AddressSection) Append(other *IPv6AddressSection) *IPv6AddressSection {
	count := section.GetSegmentCount()
	return section.ReplaceLen(count, count, other, 0, other.GetSegmentCount())
}

// Insert creates a new section by inserting the given section into this section at the given index.
func (section *IPv6AddressSection) Insert(index int, other *IPv6AddressSection) *IPv6AddressSection {
	return section.insert(index, other.ToIP(), ipv6BitsToSegmentBitshift).ToIPv6()
}

// Replace replaces the segments of this section starting at the given index with the given replacement segments.
func (section *IPv6AddressSection) Replace(index int, replacement *IPv6AddressSection) *IPv6AddressSection {
	return section.ReplaceLen(index, index+replacement.GetSegmentCount(), replacement, 0, replacement.GetSegmentCount())
}

// ReplaceLen replaces the segments starting from startIndex and ending before endIndex with the segments starting at replacementStartIndex and
// ending before replacementEndIndex from the replacement section.
func (section *IPv6AddressSection) ReplaceLen(startIndex, endIndex int, replacement *IPv6AddressSection, replacementStartIndex, replacementEndIndex int) *IPv6AddressSection {
	return section.replaceLen(startIndex, endIndex, replacement.ToIP(), replacementStartIndex, replacementEndIndex, ipv6BitsToSegmentBitshift).ToIPv6()
}

// IsAdaptiveZero returns true if the division grouping was originally created as an implicitly zero-valued section or grouping (e.g. IPv4AddressSection{}),
// meaning it was not constructed using a constructor function.
// Such a grouping, which has no divisions or segments, is convertible to an implicitly zero-valued grouping of any type or version, whether IPv6, IPv4, MAC, or other.
// In other words, when a section or grouping is the zero-value, then it is equivalent and convertible to the zero value of any other section or grouping type.
func (section *IPv6AddressSection) IsAdaptiveZero() bool {
	return section != nil && section.matchesZeroGrouping()
}

var (
	compressAll            = new(addrstr.CompressOptionsBuilder).SetCompressSingle(true).SetCompressionChoiceOptions(addrstr.ZerosOrHost).ToOptions()
	compressMixed          = new(addrstr.CompressOptionsBuilder).SetCompressSingle(true).SetCompressionChoiceOptions(addrstr.MixedPreferred).ToOptions()
	compressAllNoSingles   = new(addrstr.CompressOptionsBuilder).SetCompressionChoiceOptions(addrstr.ZerosOrHost).ToOptions()
	compressHostPreferred  = new(addrstr.CompressOptionsBuilder).SetCompressSingle(true).SetCompressionChoiceOptions(addrstr.HostPreferred).ToOptions()
	compressZeros          = new(addrstr.CompressOptionsBuilder).SetCompressSingle(true).SetCompressionChoiceOptions(addrstr.ZerosCompression).ToOptions()
	compressZerosNoSingles = new(addrstr.CompressOptionsBuilder).SetCompressionChoiceOptions(addrstr.ZerosCompression).ToOptions()

	uncWildcards = new(addrstr.WildcardOptionsBuilder).SetWildcardOptions(addrstr.WildcardsNetworkOnly).SetWildcards(
		new(addrstr.WildcardsBuilder).SetRangeSeparator(IPv6UncRangeSeparatorStr).SetWildcard(SegmentWildcardStr).ToWildcards()).ToOptions()
	base85Wildcards = new(addrstr.WildcardsBuilder).SetRangeSeparator(AlternativeRangeSeparatorStr).ToWildcards()

	mixedParams         = new(addrstr.IPv6StringOptionsBuilder).SetMixed(true).SetCompressOptions(compressMixed).ToOptions()
	ipv6FullParams      = new(addrstr.IPv6StringOptionsBuilder).SetExpandedSegments(true).SetWildcardOptions(wildcardsRangeOnlyNetworkOnly).ToOptions()
	ipv6CanonicalParams = new(addrstr.IPv6StringOptionsBuilder).SetCompressOptions(compressAllNoSingles).ToOptions()
	uncParams           = new(addrstr.IPv6StringOptionsBuilder).SetSeparator(IPv6UncSegmentSeparator).SetZoneSeparator(IPv6UncZoneSeparatorStr).
				SetAddressSuffix(IPv6UncSuffix).SetWildcardOptions(uncWildcards).ToOptions()
	ipv6CompressedParams         = new(addrstr.IPv6StringOptionsBuilder).SetCompressOptions(compressAll).ToOptions()
	ipv6normalizedParams         = new(addrstr.IPv6StringOptionsBuilder).ToOptions()
	canonicalWildcardParams      = new(addrstr.IPv6StringOptionsBuilder).SetWildcardOptions(allWildcards).SetCompressOptions(compressZerosNoSingles).ToOptions()
	ipv6NormalizedWildcardParams = new(addrstr.IPv6StringOptionsBuilder).SetWildcardOptions(allWildcards).ToOptions()    //no compression
	ipv6SqlWildcardParams        = new(addrstr.IPv6StringOptionsBuilder).SetWildcardOptions(allSQLWildcards).ToOptions() //no compression
	wildcardCompressedParams     = new(addrstr.IPv6StringOptionsBuilder).SetWildcardOptions(allWildcards).SetCompressOptions(compressZeros).ToOptions()
	networkPrefixLengthParams    = new(addrstr.IPv6StringOptionsBuilder).SetCompressOptions(compressHostPreferred).ToOptions()

	ipv6ReverseDNSParams = new(addrstr.IPv6StringOptionsBuilder).SetReverse(true).SetAddressSuffix(IPv6ReverseDnsSuffix).
				SetSplitDigits(true).SetExpandedSegments(true).SetSeparator('.').ToOptions()
	base85Params = new(addrstr.IPStringOptionsBuilder).SetRadix(85).SetExpandedSegments(true).
			SetWildcards(base85Wildcards).SetZoneSeparator(IPv6AlternativeZoneSeparatorStr).ToOptions()
	ipv6SegmentedBinaryParams = new(addrstr.IPStringOptionsBuilder).SetRadix(2).SetSeparator(IPv6SegmentSeparator).SetSegmentStrPrefix(BinaryPrefix).
					SetExpandedSegments(true).ToOptions()
)

// String implements the [fmt.Stringer] interface, returning the normalized string provided by ToNormalizedString, or "<nil>" if the receiver is a nil pointer.
func (section *IPv6AddressSection) String() string {
	if section == nil {
		return nilString()
	}
	return section.toString()
}

// ToHexString writes this address section as a single hexadecimal value (possibly two values if a range that is not a prefixed block),
// the number of digits according to the bit count, with or without a preceding "0x" prefix.
//
// If a multiple-valued section cannot be written as a single prefix block or a range of two values, an error is returned.
func (section *IPv6AddressSection) ToHexString(with0xPrefix bool) (string, addrerr.IncompatibleAddressError) {
	if section == nil {
		return nilString(), nil
	}
	return section.toHexString(with0xPrefix)
}

// ToOctalString writes this address section as a single octal value (possibly two values if a range that is not a prefixed block),
// the number of digits according to the bit count, with or without a preceding "0" prefix.
//
// If a multiple-valued section cannot be written as a single prefix block or a range of two values, an error is returned.
func (section *IPv6AddressSection) ToOctalString(with0Prefix bool) (string, addrerr.IncompatibleAddressError) {
	if section == nil {
		return nilString(), nil
	}
	return section.toOctalString(with0Prefix)
}

// ToBinaryString writes this address section as a single binary value (possibly two values if a range that is not a prefixed block),
// the number of digits according to the bit count, with or without a preceding "0b" prefix.
//
// If a multiple-valued section cannot be written as a single prefix block or a range of two values, an error is returned.
func (section *IPv6AddressSection) ToBinaryString(with0bPrefix bool) (string, addrerr.IncompatibleAddressError) {
	if section == nil {
		return nilString(), nil
	}
	return section.toBinaryString(with0bPrefix)
}

// ToBase85String creates the base 85 string, which is described by RFC 1924, "A Compact Representation of IPv6 Addresses".
// See https://www.rfc-editor.org/rfc/rfc1924.html
// It may be written as a range of two values if a range that is not a prefixed block.
//
// If a multiple-valued section cannot be written as a single prefix block or a range of two values, an error is returned.
func (section *IPv6AddressSection) ToBase85String() (string, addrerr.IncompatibleAddressError) {
	if section == nil {
		return nilString(), nil
	}
	cache := section.getStringCache()
	if cache == nil {
		return section.toBase85String(NoZone)
	}
	cacheField := &cache.base85String
	return cacheStrErr(cacheField,
		func() (string, addrerr.IncompatibleAddressError) {
			return section.toBase85String(NoZone)
		})
}

func (section *IPv6AddressSection) toBase85String(zone Zone) (string, addrerr.IncompatibleAddressError) {
	if isDual, err := section.isDualString(); err != nil {
		return "", err
	} else {
		var largeGrouping *IPAddressLargeDivisionGrouping
		if section.hasNoDivisions() {
			largeGrouping = NewIPAddressLargeDivGrouping(nil)
		} else {
			bytes := section.getBytes()
			prefLen := section.getNetworkPrefixLen()
			bitCount := section.GetBitCount()
			var div *IPAddressLargeDivision
			if isDual {
				div = NewIPAddressLargeRangePrefixDivision(bytes, section.getUpperBytes(), prefLen, bitCount, 85)
			} else {
				div = NewIPAddressLargePrefixDivision(bytes, prefLen, bitCount, 85)
			}
			largeGrouping = NewIPAddressLargeDivGrouping([]*IPAddressLargeDivision{div})
		}
		return toNormalizedIPZonedString(base85Params, largeGrouping, zone), nil
	}
}

// ToCanonicalString produces a canonical string for the address section.
//
// For IPv6, RFC 5952 describes canonical string representation.
// https://en.wikipedia.org/wiki/IPv6_address#Representation
// http://tools.ietf.org/html/rfc5952
//
//If this section has a prefix length, it will be included in the string.
func (section *IPv6AddressSection) ToCanonicalString() string {
	if section == nil {
		return nilString()
	}
	cache := section.getStringCache()
	if cache == nil {
		return section.toCanonicalString(NoZone)
	}
	return cacheStr(&cache.canonicalString,
		func() string {
			return section.toCanonicalString(NoZone)
		})
}

// ToNormalizedString produces a normalized string for the address section.
//
// For IPv6, it differs from the canonical string.  Zero-segments are not compressed.
//
// If this section has a prefix length, it will be included in the string.
func (section *IPv6AddressSection) ToNormalizedString() string {
	if section == nil {
		return nilString()
	}
	cache := section.getStringCache()
	if cache == nil {
		return section.toNormalizedString(NoZone)
	}
	return cacheStr(&cache.normalizedIPv6String,
		func() string {
			return section.toNormalizedString(NoZone)
		})
}

// ToCompressedString produces a short representation of this address section while remaining within the confines of standard representation(s) of the address.
//
// For IPv6, it differs from the canonical string.  It compresses the maximum number of zeros and/or host segments with the IPv6 compression notation '::'.
func (section *IPv6AddressSection) ToCompressedString() string {
	if section == nil {
		return nilString()
	}
	cache := section.getStringCache()
	if cache == nil {
		return section.toCompressedString(NoZone)
	}
	return cacheStr(&cache.compressedIPv6String,
		func() string {
			return section.toCompressedString(NoZone)
		})
}

// This produces the mixed IPv6/IPv4 string.  It is the shortest such string (ie fully compressed).
// For some address sections with ranges of values in the IPv4 part of the address, there is no mixed string, and an error is returned.
func (section *IPv6AddressSection) toMixedString() (string, addrerr.IncompatibleAddressError) {
	cache := section.getStringCache()
	if cache == nil {
		return section.toMixedStringZoned(NoZone)
	}
	return cacheStrErr(&cache.mixedString,
		func() (string, addrerr.IncompatibleAddressError) {
			return section.toMixedStringZoned(NoZone)
		})
}

// ToNormalizedWildcardString produces a string similar to the normalized string but avoids the CIDR prefix length.
// CIDR addresses will be shown with wildcards and ranges (denoted by '*' and '-') instead of using the CIDR prefix notation.
func (section *IPv6AddressSection) ToNormalizedWildcardString() string {
	if section == nil {
		return nilString()
	}
	cache := section.getStringCache()
	if cache == nil {
		return section.toNormalizedWildcardStringZoned(NoZone)
	}
	return cacheStr(&cache.normalizedWildcardString,
		func() string {
			return section.toNormalizedWildcardStringZoned(NoZone)
		})
}

// ToCanonicalWildcardString produces a string similar to the canonical string but avoids the CIDR prefix length.
// Address sections with a network prefix length will be shown with wildcards and ranges (denoted by '*' and '-') instead of using the CIDR prefix length notation.
// IPv6 sections will be compressed according to the canonical representation.
func (section *IPv6AddressSection) ToCanonicalWildcardString() string {
	if section == nil {
		return nilString()
	}
	cache := section.getStringCache()
	if cache == nil {
		return section.toCanonicalWildcardStringZoned(NoZone)
	}
	return cacheStr(&cache.canonicalWildcardString,
		func() string {
			return section.toCanonicalWildcardStringZoned(NoZone)
		})
}

// ToSegmentedBinaryString writes this address section as segments of binary values preceded by the "0b" prefix.
func (section *IPv6AddressSection) ToSegmentedBinaryString() string {
	if section == nil {
		return nilString()
	}
	cache := section.getStringCache()
	if cache == nil {
		return section.toSegmentedBinaryStringZoned(NoZone)
	}
	return cacheStr(&cache.segmentedBinaryString,
		func() string {
			return section.toSegmentedBinaryStringZoned(NoZone)
		})
}

// ToSQLWildcardString create a string similar to that from toNormalizedWildcardString except that
// it uses SQL wildcards.  It uses '%' instead of '*' and also uses the wildcard '_'.
func (section *IPv6AddressSection) ToSQLWildcardString() string {
	if section == nil {
		return nilString()
	}
	cache := section.getStringCache()
	if cache == nil {
		return section.toSQLWildcardStringZoned(NoZone)
	}
	return cacheStr(&cache.sqlWildcardString,
		func() string {
			return section.toSQLWildcardStringZoned(NoZone)
		})
}

// ToFullString produces a string with no compressed segments and all segments of full length with leading zeros,
// which is 4 characters for IPv6 segments.
func (section *IPv6AddressSection) ToFullString() string {
	if section == nil {
		return nilString()
	}
	cache := section.getStringCache()
	if cache == nil {
		return section.toFullStringZoned(NoZone)
	}
	return cacheStr(&cache.fullString,
		func() string {
			return section.toFullStringZoned(NoZone)
		})
}

// ToReverseDNSString generates the reverse-DNS lookup string,
// returning an error if this address section is a multiple-valued section for which the range cannot be represented.
// For "2001:db8::567:89ab" it is "b.a.9.8.7.6.5.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.8.b.d.0.1.0.0.2.ip6.arpa".
func (section *IPv6AddressSection) ToReverseDNSString() (string, addrerr.IncompatibleAddressError) {
	if section == nil {
		return nilString(), nil
	}
	cache := section.getStringCache()
	if cache == nil {
		return section.toReverseDNSStringZoned(NoZone)
	}
	return cacheStrErr(&cache.reverseDNSString,
		func() (string, addrerr.IncompatibleAddressError) {
			return section.toReverseDNSStringZoned(NoZone)
		})
}

// ToPrefixLenString returns a string with a CIDR network prefix length if this address has a network prefix length.
// For IPv6, a zero host section will be compressed with "::". For IPv4 the string is equivalent to the canonical string.
func (section *IPv6AddressSection) ToPrefixLenString() string {
	if section == nil {
		return nilString()
	}
	cache := section.getStringCache()
	if cache == nil {
		return section.toPrefixLenStringZoned(NoZone)
	}
	return cacheStr(&cache.networkPrefixLengthString,
		func() string {
			return section.toPrefixLenStringZoned(NoZone)
		})
}

// ToSubnetString produces a string with specific formats for subnets.
// The subnet string looks like "1.2.*.*" or "1:2::/16".
//
// In the case of IPv6, when a network prefix has been supplied, the prefix will be shown and the host section will be compressed with "::".
func (section *IPv6AddressSection) ToSubnetString() string {
	if section == nil {
		return nilString()
	}
	return section.ToPrefixLenString()
}

// ToCompressedWildcardString produces a string similar to ToNormalizedWildcardString, avoiding the CIDR prefix, but with full IPv6 segment compression as well, including single zero-segments.
func (section *IPv6AddressSection) ToCompressedWildcardString() string {
	if section == nil {
		return nilString()
	}
	cache := section.getStringCache()
	if cache == nil {
		return section.toCompressedWildcardStringZoned(NoZone)
	}
	return cacheStr(&cache.compressedWildcardString,
		func() string {
			return section.toCompressedWildcardStringZoned(NoZone)
		})
}

func (section *IPv6AddressSection) toCanonicalString(zone Zone) string {
	return section.toNormalizedZonedString(ipv6CanonicalParams, zone)
}

func (section *IPv6AddressSection) toNormalizedString(zone Zone) string {
	return section.toNormalizedZonedString(ipv6normalizedParams, zone)
}

func (section *IPv6AddressSection) toCompressedString(zone Zone) string {
	return section.toNormalizedZonedString(ipv6CompressedParams, zone)
}

func (section *IPv6AddressSection) toMixedStringZoned(zone Zone) (string, addrerr.IncompatibleAddressError) {
	return section.toNormalizedMixedZonedString(mixedParams, zone)
}

func (section *IPv6AddressSection) toNormalizedWildcardStringZoned(zone Zone) string {
	return section.toNormalizedZonedString(ipv6NormalizedWildcardParams, zone)
}

func (section *IPv6AddressSection) toCanonicalWildcardStringZoned(zone Zone) string {
	return section.toNormalizedZonedString(canonicalWildcardParams, zone)
}

func (section *IPv6AddressSection) toSegmentedBinaryStringZoned(zone Zone) string {
	return section.ipAddressSectionInternal.toCustomZonedString(ipv6SegmentedBinaryParams, zone)
}

func (section *IPv6AddressSection) toSQLWildcardStringZoned(zone Zone) string {
	return section.toNormalizedZonedString(ipv6SqlWildcardParams, zone)
}

func (section *IPv6AddressSection) toFullStringZoned(zone Zone) string {
	return section.toNormalizedZonedString(ipv6FullParams, zone)
}

func (section *IPv6AddressSection) toReverseDNSStringZoned(zone Zone) (string, addrerr.IncompatibleAddressError) {
	return section.toNormalizedSplitZonedString(ipv6ReverseDNSParams, zone)
}

func (section *IPv6AddressSection) toPrefixLenStringZoned(zone Zone) string {
	return section.toNormalizedZonedString(networkPrefixLengthParams, zone)
}

func (section *IPv6AddressSection) toCompressedWildcardStringZoned(zone Zone) string {
	return section.toNormalizedZonedString(wildcardCompressedParams, zone)
}

// ToCustomString creates a customized string from this address section according to the given string option parameters.
//
// Errors can result from split digits with ranged values, or mixed IPv4/v6 with ranged values, when the segment ranges are incompatible.
func (section *IPv6AddressSection) ToCustomString(stringOptions addrstr.IPv6StringOptions) (string, addrerr.IncompatibleAddressError) {
	if section == nil {
		return nilString(), nil
	}
	return section.toCustomString(stringOptions, NoZone)
}

func (section *IPv6AddressSection) toCustomString(stringOptions addrstr.IPv6StringOptions, zone Zone) (string, addrerr.IncompatibleAddressError) {
	if stringOptions.IsMixed() {
		return section.toNormalizedMixedZonedString(stringOptions, zone)
	} else if stringOptions.IsSplitDigits() {
		return section.toNormalizedSplitZonedString(stringOptions, zone)
	}
	return section.toNormalizedZonedString(stringOptions, zone), nil
}

func (section *IPv6AddressSection) toNormalizedMixedZonedString(options addrstr.IPv6StringOptions, zone Zone) (string, addrerr.IncompatibleAddressError) {
	stringParams := from(options, section)
	if stringParams.nextUncompressedIndex <= IPv6MixedOriginalSegmentCount { //the mixed section is not compressed
		mixedParams := &ipv6v4MixedParams{
			ipv6Params: stringParams,
			ipv4Params: toIPParams(options.GetIPv4Opts()),
		}
		return section.toNormalizedMixedString(mixedParams, zone)
	}
	// the mixed section is compressed
	return stringParams.toZonedString(section, zone), nil
}

func (section *IPv6AddressSection) toNormalizedZonedString(options addrstr.IPv6StringOptions, zone Zone) string {
	return from(options, section).toZonedString(section, zone)
}

func (section *IPv6AddressSection) toNormalizedSplitZonedString(options addrstr.IPv6StringOptions, zone Zone) (string, addrerr.IncompatibleAddressError) {
	return from(options, section).toZonedSplitString(section, zone)
}

func (section *IPv6AddressSection) toNormalizedMixedString(mixedParams *ipv6v4MixedParams, zone Zone) (string, addrerr.IncompatibleAddressError) {
	mixed, err := section.getMixedAddressGrouping()
	if err != nil {
		return "", err
	}
	return mixedParams.toZonedString(mixed, zone), nil
}

// GetSegmentStrings returns a slice with the string for each segment being the string that is normalized with wildcards.
func (section *IPv6AddressSection) GetSegmentStrings() []string {
	if section == nil {
		return nil
	}
	return section.getSegmentStrings()
}

// ToDivGrouping converts to an AddressDivisionGrouping, a polymorphic type usable with all address sections and division groupings.
// Afterwards, you can convert back with ToIPv6.
//
// ToDivGrouping can be called with a nil receiver, enabling you to chain this method with methods that might return a nil pointer.
func (section *IPv6AddressSection) ToDivGrouping() *AddressDivisionGrouping {
	return section.ToSectionBase().ToDivGrouping()
}

// ToSectionBase converts to an AddressSection, a polymorphic type usable with all address sections.
// Afterwards, you can convert back with ToIPv6.
//
// ToSectionBase can be called with a nil receiver, enabling you to chain this method with methods that might return a nil pointer.
func (section *IPv6AddressSection) ToSectionBase() *AddressSection {
	return section.ToIP().ToSectionBase()
}

// ToIP converts to an IPAddressSection, a polymorphic type usable with all IP address sections.
//
// ToIP can be called with a nil receiver, enabling you to chain this method with methods that might return a nil pointer.
func (section *IPv6AddressSection) ToIP() *IPAddressSection {
	return (*IPAddressSection)(section)
}

func (section *IPv6AddressSection) getMixedAddressGrouping() (*IPv6v4MixedAddressGrouping, addrerr.IncompatibleAddressError) {
	cache := section.cache
	var sect *IPv6v4MixedAddressGrouping
	var mCache *mixedCache
	if cache != nil {
		mCache = (*mixedCache)(atomicLoadPointer((*unsafe.Pointer)(unsafe.Pointer(&cache.mixed))))
		if mCache != nil {
			sect = mCache.defaultMixedAddressSection
		}
	}
	if sect == nil {
		mixedSect, err := section.createEmbeddedIPv4AddressSection()
		if err != nil {
			return nil, err
		}
		sect = newIPv6v4MixedGrouping(
			section.createNonMixedSection(),
			mixedSect,
		)
		if cache != nil {
			mixed := &mixedCache{
				defaultMixedAddressSection: sect,
				embeddedIPv6Section:        sect.GetIPv6AddressSection(),
				embeddedIPv4Section:        sect.GetIPv4AddressSection(),
			}
			dataLoc := (*unsafe.Pointer)(unsafe.Pointer(&cache.mixed))
			atomicStorePointer(dataLoc, unsafe.Pointer(mixed))
		}
	}
	return sect, nil
}

// Gets the IPv4 section corresponding to the lowest (least-significant) 4 bytes in the original address,
// which will correspond to between 0 and 4 bytes in this address.  Many IPv4 to IPv6 mapping schemes (but not all) use these 4 bytes for a mapped IPv4 address.
func (section *IPv6AddressSection) getEmbeddedIPv4AddressSection() (*IPv4AddressSection, addrerr.IncompatibleAddressError) {
	cache := section.cache
	if cache == nil {
		return section.createEmbeddedIPv4AddressSection()
	}
	sect, err := section.getMixedAddressGrouping()
	if err != nil {
		return nil, err
	}
	return sect.GetIPv4AddressSection(), nil
}

// GetIPv4AddressSection produces an IPv4 address section from a sequence of bytes in this IPv6 address section.
func (section *IPv6AddressSection) GetIPv4AddressSection(startByteIndex, endByteIndex int) (*IPv4AddressSection, addrerr.IncompatibleAddressError) {
	if startByteIndex == IPv6MixedOriginalSegmentCount<<1 && endByteIndex == (section.GetSegmentCount()<<1) {
		return section.getEmbeddedIPv4AddressSection()
	}
	segments := make([]*AddressDivision, endByteIndex-startByteIndex)
	i := startByteIndex
	j := 0
	bytesPerSegment := section.GetBytesPerSegment()
	if i%bytesPerSegment == 1 {
		ipv6Segment := section.GetSegment(i >> 1)
		i++
		if err := ipv6Segment.splitIntoIPv4Segments(segments, j-1); err != nil {
			return nil, err
		}
		j++
	}
	for ; i < endByteIndex; i, j = i+bytesPerSegment, j+bytesPerSegment {
		ipv6Segment := section.GetSegment(i >> 1)
		if err := ipv6Segment.splitIntoIPv4Segments(segments, j); err != nil {
			return nil, err
		}
	}
	res := createIPv4Section(segments)
	res.initMultAndPrefLen()
	return res, nil
}

func (section *IPv6AddressSection) createNonMixedSection() *EmbeddedIPv6AddressSection {
	nonMixedCount := IPv6MixedOriginalSegmentCount
	mixedCount := section.GetSegmentCount() - nonMixedCount
	var result *IPv6AddressSection
	if mixedCount <= 0 {
		result = section
	} else {
		nonMixed := make([]*AddressDivision, nonMixedCount)
		section.copySubDivisions(0, nonMixedCount, nonMixed)
		result = createIPv6Section(nonMixed)
		result.initMultAndPrefLen()
	}
	return &EmbeddedIPv6AddressSection{
		embeddedIPv6AddressSection: embeddedIPv6AddressSection{*result},
		encompassingSection:        section,
	}
}

type embeddedIPv6AddressSection struct {
	IPv6AddressSection
}

// EmbeddedIPv6AddressSection represents the initial IPv6 section of an IPv6v4MixedAddressGrouping.
type EmbeddedIPv6AddressSection struct {
	embeddedIPv6AddressSection
	encompassingSection *IPv6AddressSection
}

// IsPrefixBlock returns whether this address segment series has a prefix length and includes the block associated with its prefix length.
// If the prefix length matches the bit count, this returns true.
//
// This is different from ContainsPrefixBlock in that this method returns
// false if the series has no prefix length, or a prefix length that differs from a prefix length for which ContainsPrefixBlock returns true.
func (section *EmbeddedIPv6AddressSection) IsPrefixBlock() bool {
	ipv6Sect := section.encompassingSection
	if ipv6Sect == nil {
		ipv6Sect = zeroIPv6AddressSection
	}
	return ipv6Sect.IsPrefixBlock()
}

func (section *IPv6AddressSection) createEmbeddedIPv4AddressSection() (sect *IPv4AddressSection, err addrerr.IncompatibleAddressError) {
	nonMixedCount := IPv6MixedOriginalSegmentCount
	segCount := section.GetSegmentCount()
	mixedCount := segCount - nonMixedCount
	lastIndex := segCount - 1
	var mixed []*AddressDivision
	if mixedCount == 0 {
		mixed = []*AddressDivision{}
	} else if mixedCount == 1 {
		mixed = make([]*AddressDivision, section.GetBytesPerSegment())
		last := section.GetSegment(lastIndex)
		if err := last.splitIntoIPv4Segments(mixed, 0); err != nil {
			return nil, err
		}
	} else {
		bytesPerSeg := section.GetBytesPerSegment()
		mixed = make([]*AddressDivision, bytesPerSeg<<1)
		low := section.GetSegment(lastIndex)
		high := section.GetSegment(lastIndex - 1)
		if err := high.splitIntoIPv4Segments(mixed, 0); err != nil {
			return nil, err
		}
		if err := low.splitIntoIPv4Segments(mixed, bytesPerSeg); err != nil {
			return nil, err
		}
	}
	sect = createIPv4Section(mixed)
	sect.initMultAndPrefLen()
	return
}

func createMixedAddressGrouping(divisions []*AddressDivision, mixedCache *mixedCache) *IPv6v4MixedAddressGrouping {
	grouping := &IPv6v4MixedAddressGrouping{
		addressDivisionGroupingInternal: addressDivisionGroupingInternal{
			addressDivisionGroupingBase: addressDivisionGroupingBase{
				divisions: standardDivArray(divisions),
				addrType:  ipv6v4MixedType,
				cache:     &valueCache{mixed: mixedCache},
			},
		},
	}
	ipv6Section := mixedCache.embeddedIPv6Section
	ipv4Section := mixedCache.embeddedIPv4Section
	grouping.isMult = ipv6Section.isMultiple() || ipv4Section.isMultiple()
	if ipv6Section.IsPrefixed() {
		grouping.prefixLength = ipv6Section.getPrefixLen()
	} else if ipv4Section.IsPrefixed() {
		grouping.prefixLength = cacheBitCount(ipv6Section.GetBitCount() + ipv4Section.getPrefixLen().bitCount())
	}
	return grouping
}

func newIPv6v4MixedGrouping(ipv6Section *EmbeddedIPv6AddressSection, ipv4Section *IPv4AddressSection) *IPv6v4MixedAddressGrouping {
	ipv6Len := ipv6Section.GetSegmentCount()
	ipv4Len := ipv4Section.GetSegmentCount()
	allSegs := make([]*AddressDivision, ipv6Len+ipv4Len)
	ipv6Section.copySubDivisions(0, ipv6Len, allSegs)
	ipv4Section.copySubDivisions(0, ipv4Len, allSegs[ipv6Len:])
	grouping := createMixedAddressGrouping(allSegs, &mixedCache{
		embeddedIPv6Section: ipv6Section,
		embeddedIPv4Section: ipv4Section,
	})
	return grouping
}

// IPv6v4MixedAddressGrouping has divisions which are a mix of IPv6 and IPv4 divisions.
// It has an initial IPv6 section followed by an IPv4 section.
type IPv6v4MixedAddressGrouping struct {
	addressDivisionGroupingInternal
}

// Compare returns a negative integer, zero, or a positive integer if this address division grouping is less than, equal, or greater than the given item.
// Any address item is comparable to any other.  All address items use CountComparator to compare.
func (grouping *IPv6v4MixedAddressGrouping) Compare(item AddressItem) int {
	return CountComparator.Compare(grouping, item)
}

// CompareSize compares the counts of two items, the number of individual items represented in each.
//
// Rather than calculating counts with GetCount, there can be more efficient ways of determining whether this grouping represents more individual address groupings than another item.
//
// CompareSize returns a positive integer if this address division grouping has a larger count than the item given, zero if they are the same, or a negative integer if the other has a larger count.
func (grouping *IPv6v4MixedAddressGrouping) CompareSize(other AddressItem) int {
	if grouping == nil {
		if isNilItem(other) {
			return 0
		}
		// we have size 0, other has size >= 1
		return -1
	}
	return grouping.compareSize(other)
}

// GetCount returns the count of possible distinct values for this item.
// If not representing multiple values, the count is 1,
// unless this is a division grouping with no divisions, or an address section with no segments, in which case it is 0.
//
// Use IsMultiple if you simply want to know if the count is greater than 1.
func (grouping *IPv6v4MixedAddressGrouping) GetCount() *big.Int {
	if grouping == nil {
		return bigZero()
	}
	cnt := grouping.GetIPv6AddressSection().GetCount()
	return cnt.Mul(cnt, grouping.GetIPv4AddressSection().GetCount())
}

// IsMultiple returns  whether this grouping represents multiple values.
func (grouping *IPv6v4MixedAddressGrouping) IsMultiple() bool {
	return grouping != nil && grouping.isMultiple()
}

// IsPrefixed returns whether this grouping has an associated prefix length.
func (grouping *IPv6v4MixedAddressGrouping) IsPrefixed() bool {
	return grouping != nil && grouping.isPrefixed()
}

// IsAdaptiveZero returns true if the division grouping was originally created as an implicitly zero-valued section or grouping (e.g. IPv4AddressSection{}),
// meaning it was not constructed using a constructor function.
// Such a grouping, which has no divisions or segments, is convertible to an implicitly zero-valued grouping of any type or version, whether IPv6, IPv4, MAC, or other.
// In other words, when a section or grouping is the zero-value, then it is equivalent and convertible to the zero value of any other section or grouping type.
func (grouping *IPv6v4MixedAddressGrouping) IsAdaptiveZero() bool {
	return grouping != nil && grouping.matchesZeroGrouping()
}

// ToDivGrouping converts to an AddressDivisionGrouping, a polymorphic type usable with all address sections and division groupings.
// Afterwards, you can convert back with ToMixedIPv6v4.
//
// ToDivGrouping can be called with a nil receiver, enabling you to chain this method with methods that might return a nil pointer.
func (grouping *IPv6v4MixedAddressGrouping) ToDivGrouping() *AddressDivisionGrouping {
	return (*AddressDivisionGrouping)(grouping)
}

// by using cached sections for zero values, we will return the same section
// pointer for repeated calls to the same zero-valued containing section

var (
	zeroEmbeddedIPv6AddressSection = &EmbeddedIPv6AddressSection{}
	zeroIPv4AddressSection         = &IPv4AddressSection{}
	zeroIPv6AddressSection         = &IPv6AddressSection{}
)

// GetIPv6AddressSection returns the initial IPv6 section of the grouping.
func (grouping *IPv6v4MixedAddressGrouping) GetIPv6AddressSection() *EmbeddedIPv6AddressSection {
	if grouping == nil {
		return nil
	}
	cache := grouping.cache
	if cache == nil { // zero-valued
		return zeroEmbeddedIPv6AddressSection
	}
	return cache.mixed.embeddedIPv6Section
}

// GetIPv4AddressSection returns the ending IPv4 section of the grouping.
func (grouping *IPv6v4MixedAddressGrouping) GetIPv4AddressSection() *IPv4AddressSection {
	if grouping == nil {
		return nil
	}
	cache := grouping.cache
	if cache == nil { // zero-valued
		return zeroIPv4AddressSection
	}
	return cache.mixed.embeddedIPv4Section
}

// String implements the [fmt.Stringer] interface,
// as a slice string with each division converted to a string by String ( ie "[ div0 div1 ...]"),
// or "<nil>" if the receiver is a nil pointer.
func (grouping *IPv6v4MixedAddressGrouping) String() string {
	if grouping == nil {
		return nilString()
	}
	// used to use grouping.toString() but decided to use a mixed string instead
	parms := mixedParams
	ipv6Sect := grouping.GetIPv6AddressSection().encompassingSection
	if ipv6Sect == nil {
		ipv6Sect = zeroIPv6AddressSection
	}
	// using ipv6Sect here instead of grouping.GetIPv6AddressSection() affects whether compression is used
	stringParams := from(parms, ipv6Sect) // I guess this would have to be on the ipv6 section - but no compress host
	params := &ipv6v4MixedParams{
		ipv6Params: stringParams,
		ipv4Params: toIPParams(parms.GetIPv4Opts()),
	}
	// using grouping.GetIPv6AddressSection() here affects the results of IsPrefixBlock to account for the IPv4 section that follows the IPv6 section
	result := params.toZonedString(grouping, NoZone)
	return result
}

// Format is intentionally the only method with non-pointer receivers.  It is not intended to be called directly, it is intended for use by the fmt package.
// When called by a function in the fmt package, nil values are detected before this method is called, avoiding a panic when calling this method.

// Format implements [fmt.Formatter] interface. It accepts the formats
//  - 'v' for the default address and section format (either the normalized or canonical string),
//  - 's' (string) for the same
//  - 'q' for a quoted string
func (grouping IPv6v4MixedAddressGrouping) Format(state fmt.State, verb rune) {
	var str string
	switch verb {
	case 's', 'v', 'q':
		str = grouping.String()
		if verb == 'q' {
			if state.Flag('#') {
				str = "`" + str + "`"
			} else {
				str = `"` + str + `"`
			}
		}
	default:
		// format not supported
		_, _ = fmt.Fprintf(state, "%%!%c(address=%s)", verb, grouping.String())
		return
	}
	_, _ = state.Write([]byte(str))
}

var ffMACSeg, feMACSeg = NewMACSegment(0xff), NewMACSegment(0xfe)

func toIPv6SegmentsFromEUI(
	segments []*AddressDivision,
	ipv6StartIndex int, // the index into the IPv6 segment array to put the MAC-based IPv6 segments
	eui *MACAddressSection, // must be full 6 or 8 mac sections
	prefixLength PrefixLen) addrerr.IncompatibleAddressError {
	euiSegmentIndex := 0
	var seg3, seg4 *MACAddressSegment
	var err addrerr.IncompatibleAddressError
	seg0 := eui.GetSegment(euiSegmentIndex)
	euiSegmentIndex++
	seg1 := eui.GetSegment(euiSegmentIndex)
	euiSegmentIndex++
	seg2 := eui.GetSegment(euiSegmentIndex)
	euiSegmentIndex++
	isExtended := eui.GetSegmentCount() == ExtendedUniqueIdentifier64SegmentCount
	if isExtended {
		seg3 = eui.GetSegment(euiSegmentIndex)
		euiSegmentIndex++
		if !seg3.matches(0xff) {
			return &incompatibleAddressError{addressError{key: "ipaddress.mac.error.not.eui.convertible"}}
		}
		seg4 = eui.GetSegment(euiSegmentIndex)
		euiSegmentIndex++
		if !seg4.matches(0xfe) {
			return &incompatibleAddressError{addressError{key: "ipaddress.mac.error.not.eui.convertible"}}
		}
	} else {
		seg3 = ffMACSeg
		seg4 = feMACSeg
	}
	seg5 := eui.GetSegment(euiSegmentIndex)
	euiSegmentIndex++
	seg6 := eui.GetSegment(euiSegmentIndex)
	euiSegmentIndex++
	seg7 := eui.GetSegment(euiSegmentIndex)
	var currentPrefix PrefixLen
	if prefixLength != nil {
		//since the prefix comes from the ipv6 section and not the MAC section, any segment prefix for the MAC section is 0 or nil
		//prefixes across segments have the pattern: nil, nil, ..., nil, 0-16, 0, 0, ..., 0
		//So if the overall prefix is 0, then the prefix of every segment is 0
		currentPrefix = cacheBitCount(0)
	}
	var seg *IPv6AddressSegment
	if seg, err = seg0.JoinAndFlip2ndBit(seg1, currentPrefix); /* only this first one gets the flipped bit */ err == nil {
		segments[ipv6StartIndex] = seg.ToDiv()
		ipv6StartIndex++
		if seg, err = seg2.Join(seg3, currentPrefix); err == nil {
			segments[ipv6StartIndex] = seg.ToDiv()
			ipv6StartIndex++
			if seg, err = seg4.Join(seg5, currentPrefix); err == nil {
				segments[ipv6StartIndex] = seg.ToDiv()
				ipv6StartIndex++
				if seg, err = seg6.Join(seg7, currentPrefix); err == nil {
					segments[ipv6StartIndex] = seg.ToDiv()
					return nil
				}
			}
		}
	}
	return err
}

// SegmentSequence represents a sequence of consecutive segments with the given length starting from the given segment index.
type SegmentSequence struct {
	index, length int
}

// SegmentSequenceList represents a list of SegmentSequence instances.
type SegmentSequenceList struct {
	ranges []SegmentSequence
}

func (list SegmentSequenceList) size() int {
	return len(list.ranges)
}

func (list SegmentSequenceList) getRange(index int) SegmentSequence {
	return list.ranges[index]
}