1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943
|
//
// Copyright 2020-2022 Sean C Foley
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
package ipaddr
import (
"math/big"
"unsafe"
"github.com/seancfoley/ipaddress-go/ipaddr/addrerr"
)
type IPv6SegInt = uint16
type IPv6SegmentValueProvider func(segmentIndex int) IPv6SegInt
// WrapIPv6SegmentValueProvider converts the given IPv6SegmentValueProvider to a SegmentValueProvider.
func WrapIPv6SegmentValueProvider(f IPv6SegmentValueProvider) SegmentValueProvider {
if f == nil {
return nil
}
return func(segmentIndex int) SegInt {
return SegInt(f(segmentIndex))
}
}
// WrapSegmentValueProviderForIPv6 converts the given SegmentValueProvider to an IPv6SegmentValueProvider.
// Values that do not fit IPv6SegInt are truncated.
func WrapSegmentValueProviderForIPv6(f SegmentValueProvider) IPv6SegmentValueProvider {
if f == nil {
return nil
}
return func(segmentIndex int) IPv6SegInt {
return IPv6SegInt(f(segmentIndex))
}
}
const useIPv6SegmentCache = true
type ipv6SegmentValues struct {
value IPv6SegInt
upperValue IPv6SegInt
prefLen PrefixLen
cache divCache
}
func (seg *ipv6SegmentValues) getAddrType() addrType {
return ipv6Type
}
func (seg *ipv6SegmentValues) includesZero() bool {
return seg.value == 0
}
func (seg *ipv6SegmentValues) includesMax() bool {
return seg.upperValue == 0xffff
}
func (seg *ipv6SegmentValues) isMultiple() bool {
return seg.value != seg.upperValue
}
func (seg *ipv6SegmentValues) getCount() *big.Int {
return big.NewInt(int64(seg.upperValue-seg.value) + 1)
}
func (seg *ipv6SegmentValues) getBitCount() BitCount {
return IPv6BitsPerSegment
}
func (seg *ipv6SegmentValues) getByteCount() int {
return IPv6BytesPerSegment
}
func (seg *ipv6SegmentValues) getValue() *BigDivInt {
return big.NewInt(int64(seg.value))
}
func (seg *ipv6SegmentValues) getUpperValue() *BigDivInt {
return big.NewInt(int64(seg.upperValue))
}
func (seg *ipv6SegmentValues) getDivisionValue() DivInt {
return DivInt(seg.value)
}
func (seg *ipv6SegmentValues) getUpperDivisionValue() DivInt {
return DivInt(seg.upperValue)
}
func (seg *ipv6SegmentValues) getDivisionPrefixLength() PrefixLen {
return seg.prefLen
}
func (seg *ipv6SegmentValues) getSegmentValue() SegInt {
return SegInt(seg.value)
}
func (seg *ipv6SegmentValues) getUpperSegmentValue() SegInt {
return SegInt(seg.upperValue)
}
func (seg *ipv6SegmentValues) calcBytesInternal() (bytes, upperBytes []byte) {
bytes = []byte{byte(seg.value >> 8), byte(seg.value)}
if seg.isMultiple() {
upperBytes = []byte{byte(seg.upperValue >> 8), byte(seg.upperValue)}
} else {
upperBytes = bytes
}
return
}
func (seg *ipv6SegmentValues) bytesInternal(upper bool) []byte {
var val IPv6SegInt
if upper {
val = seg.upperValue
} else {
val = seg.value
}
return []byte{byte(val >> 8), byte(val)}
}
func (seg *ipv6SegmentValues) deriveNew(val, upperVal DivInt, prefLen PrefixLen) divisionValues {
return newIPv6SegmentPrefixedValues(IPv6SegInt(val), IPv6SegInt(upperVal), prefLen)
}
func (seg *ipv6SegmentValues) derivePrefixed(prefLen PrefixLen) divisionValues {
return newIPv6SegmentPrefixedValues(seg.value, seg.upperValue, prefLen)
}
func (seg *ipv6SegmentValues) deriveNewSeg(val SegInt, prefLen PrefixLen) divisionValues {
return newIPv6SegmentPrefixedVal(IPv6SegInt(val), prefLen)
}
func (seg *ipv6SegmentValues) deriveNewMultiSeg(val, upperVal SegInt, prefLen PrefixLen) divisionValues {
return newIPv6SegmentPrefixedValues(IPv6SegInt(val), IPv6SegInt(upperVal), prefLen)
}
func (seg *ipv6SegmentValues) getCache() *divCache {
return &seg.cache
}
var _ divisionValues = &ipv6SegmentValues{}
var zeroIPv6Seg = NewIPv6Segment(0)
var zeroIPv6SegZeroPrefix = NewIPv6PrefixedSegment(0, cacheBitCount(0))
var zeroIPv6SegPrefixBlock = NewIPv6RangePrefixedSegment(0, IPv6MaxValuePerSegment, cacheBitCount(0))
// IPv6AddressSegment represents a segment of an IPv6 address.
// An IPv6 segment contains a single value or a range of sequential values, a prefix length, and it has bit length of 16 bits.
//
// Like strings, segments are immutable, which also makes them concurrency-safe.
//
// See AddressSegment for more details regarding segments.
type IPv6AddressSegment struct {
ipAddressSegmentInternal
}
func (seg *IPv6AddressSegment) init() *IPv6AddressSegment {
if seg.divisionValues == nil {
return zeroIPv6Seg
}
return seg
}
// GetIPv6SegmentValue returns the lower value. Same as GetSegmentValue but returned as a IPv6SegInt.
func (seg *IPv6AddressSegment) GetIPv6SegmentValue() IPv6SegInt {
return IPv6SegInt(seg.GetSegmentValue())
}
// GetIPv6UpperSegmentValue returns the lower value. Same as GetUpperSegmentValue but returned as a IPv6SegInt.
func (seg *IPv6AddressSegment) GetIPv6UpperSegmentValue() IPv6SegInt {
return IPv6SegInt(seg.GetUpperSegmentValue())
}
// Contains returns whether this is same type and version as the given segment and whether it contains all values in the given segment.
func (seg *IPv6AddressSegment) Contains(other AddressSegmentType) bool {
if seg == nil {
return other == nil || other.ToSegmentBase() == nil
}
return seg.init().contains(other)
}
// Equal returns whether the given segment is equal to this segment.
// Two segments are equal if they match:
// - type/version: IPv6
// - value range
// Prefix lengths are ignored.
func (seg *IPv6AddressSegment) Equal(other AddressSegmentType) bool {
if seg == nil {
return other == nil || other.ToDiv() == nil
}
return seg.init().equal(other)
}
// PrefixContains returns whether the prefix values in the prefix of the given segment are also prefix values in this segment.
// It returns whether the prefix of this segment contains the prefix of the given segment.
func (seg *IPv6AddressSegment) PrefixContains(other AddressSegmentType, prefixLength BitCount) bool {
return seg.init().ipAddressSegmentInternal.PrefixContains(other, prefixLength)
}
// PrefixEqual returns whether the prefix bits of this segment match the same bits of the given segment.
// It returns whether the two segments share the same range of prefix values using the given prefix length.
func (seg *IPv6AddressSegment) PrefixEqual(other AddressSegmentType, prefixLength BitCount) bool {
return seg.init().ipAddressSegmentInternal.PrefixEqual(other, prefixLength)
}
// Compare returns a negative integer, zero, or a positive integer if this address segment is less than, equal, or greater than the given item.
// Any address item is comparable to any other. All address items use CountComparator to compare.
func (seg *IPv6AddressSegment) Compare(item AddressItem) int {
if seg != nil {
seg = seg.init()
}
return CountComparator.Compare(seg, item)
}
// CompareSize compares the counts of two items, the number of individual values within.
//
// Rather than calculating counts with GetCount, there can be more efficient ways of determining whether one represents more individual values than another.
//
// CompareSize returns a positive integer if this segment has a larger count than the one given, zero if they are the same, or a negative integer if the other has a larger count.
func (seg *IPv6AddressSegment) CompareSize(other AddressItem) int {
if seg == nil {
if isNilItem(other) {
return 0
}
// we have size 0, other has size >= 1
return -1
}
return seg.init().compareSize(other)
}
// GetBitCount returns the number of bits in each value comprising this address item, which is 16.
func (seg *IPv6AddressSegment) GetBitCount() BitCount {
return IPv6BitsPerSegment
}
// GetByteCount returns the number of bytes required for each value comprising this address item, which is 2.
func (seg *IPv6AddressSegment) GetByteCount() int {
return IPv6BytesPerSegment
}
// GetMaxValue gets the maximum possible value for this type or version of segment, determined by the number of bits.
//
// For the highest range value of this particular segment, use GetUpperSegmentValue.
func (seg *IPv6AddressSegment) GetMaxValue() IPv6SegInt {
return 0xffff
}
// GetLower returns a segment representing just the lowest value in the range, which will be the same segment if it represents a single value.
func (seg *IPv6AddressSegment) GetLower() *IPv6AddressSegment {
return seg.init().getLower().ToIPv6()
}
// GetUpper returns a segment representing just the highest value in the range, which will be the same segment if it represents a single value.
func (seg *IPv6AddressSegment) GetUpper() *IPv6AddressSegment {
return seg.init().getUpper().ToIPv6()
}
// IsMultiple returns whether this segment represents multiple values.
func (seg *IPv6AddressSegment) IsMultiple() bool {
return seg != nil && seg.isMultiple()
}
// GetCount returns the count of possible distinct values for this item.
// If not representing multiple values, the count is 1.
//
// For instance, a segment with the value range of 3-7 has count 5.
//
// Use IsMultiple if you simply want to know if the count is greater than 1.
func (seg *IPv6AddressSegment) GetCount() *big.Int {
if seg == nil {
return bigZero()
}
return seg.getCount()
}
// GetPrefixCountLen returns the count of the number of distinct prefix values for the given prefix length in the range of values of this segment.
func (seg *IPv6AddressSegment) GetPrefixCountLen(segmentPrefixLength BitCount) *big.Int {
return seg.init().ipAddressSegmentInternal.GetPrefixCountLen(segmentPrefixLength)
}
// GetPrefixValueCountLen returns the same value as GetPrefixCountLen as an integer.
func (seg *IPv6AddressSegment) GetPrefixValueCountLen(segmentPrefixLength BitCount) SegIntCount {
return seg.init().ipAddressSegmentInternal.GetPrefixValueCountLen(segmentPrefixLength)
}
// IsOneBit returns true if the bit in the lower value of this segment at the given index is 1, where index 0 is the most significant bit.
func (seg *IPv6AddressSegment) IsOneBit(segmentBitIndex BitCount) bool {
return seg.init().ipAddressSegmentInternal.IsOneBit(segmentBitIndex)
}
// Bytes returns the lowest value in the address segment range as a byte slice.
func (seg *IPv6AddressSegment) Bytes() []byte {
return seg.init().ipAddressSegmentInternal.Bytes()
}
// UpperBytes returns the highest value in the address segment range as a byte slice.
func (seg *IPv6AddressSegment) UpperBytes() []byte {
return seg.init().ipAddressSegmentInternal.UpperBytes()
}
// CopyBytes copies the lowest value in the address segment range into a byte slice.
//
// If the value can fit in the given slice, the value is copied into that slice and a length-adjusted sub-slice is returned.
// Otherwise, a new slice is created and returned with the value.
func (seg *IPv6AddressSegment) CopyBytes(bytes []byte) []byte {
return seg.init().ipAddressSegmentInternal.CopyBytes(bytes)
}
// CopyUpperBytes copies the highest value in the address segment range into a byte slice.
//
// If the value can fit in the given slice, the value is copied into that slice and a length-adjusted sub-slice is returned.
// Otherwise, a new slice is created and returned with the value.
func (seg *IPv6AddressSegment) CopyUpperBytes(bytes []byte) []byte {
return seg.init().ipAddressSegmentInternal.CopyUpperBytes(bytes)
}
// GetPrefixValueCount returns the count of prefixes in this segment for its prefix length, or the total count if it has no prefix length.
func (seg *IPv6AddressSegment) GetPrefixValueCount() SegIntCount {
return seg.init().ipAddressSegmentInternal.GetPrefixValueCount()
}
// MatchesWithPrefixMask applies the network mask of the given bit-length to this segment and then compares the result with the given value masked by the same mask,
// returning true if the resulting range matches the given single value.
func (seg *IPv6AddressSegment) MatchesWithPrefixMask(value IPv6SegInt, networkBits BitCount) bool {
return seg.init().ipAddressSegmentInternal.MatchesWithPrefixMask(SegInt(value), networkBits)
}
// GetBlockMaskPrefixLen returns the prefix length if this address segment is equivalent to the mask for a CIDR prefix block.
// Otherwise, it returns nil.
// A CIDR network mask is a segment with all ones in the network bits and then all zeros in the host bits.
// A CIDR host mask is a segment with all zeros in the network bits and then all ones in the host bits.
// The prefix length is the bit-length of the network bits.
//
// Also, keep in mind that the prefix length returned by this method is not equivalent to the prefix length of this segment.
// The prefix length returned here indicates the whether the value of this segment can be used as a mask for the network and host
// bits of any other segment. Therefore, the two values can be different values, or one can be nil while the other is not.
//
// This method applies only to the lower value of the range if this segment represents multiple values.
func (seg *IPv6AddressSegment) GetBlockMaskPrefixLen(network bool) PrefixLen {
return seg.init().ipAddressSegmentInternal.GetBlockMaskPrefixLen(network)
}
// GetTrailingBitCount returns the number of consecutive trailing one or zero bits.
// If ones is true, returns the number of consecutive trailing zero bits.
// Otherwise, returns the number of consecutive trailing one bits.
//
// This method applies only to the lower value of the range if this segment represents multiple values.
func (seg *IPv6AddressSegment) GetTrailingBitCount(ones bool) BitCount {
return seg.init().ipAddressSegmentInternal.GetTrailingBitCount(ones)
}
// GetLeadingBitCount returns the number of consecutive leading one or zero bits.
// If ones is true, returns the number of consecutive leading one bits.
// Otherwise, returns the number of consecutive leading zero bits.
//
// This method applies only to the lower value of the range if this segment represents multiple values.
func (seg *IPv6AddressSegment) GetLeadingBitCount(ones bool) BitCount {
return seg.init().ipAddressSegmentInternal.GetLeadingBitCount(ones)
}
// ToPrefixedNetworkSegment returns a segment with the network bits matching this segment but the host bits converted to zero.
// The new segment will be assigned the given prefix length.
func (seg *IPv6AddressSegment) ToPrefixedNetworkSegment(segmentPrefixLength PrefixLen) *IPv6AddressSegment {
return seg.init().toPrefixedNetworkDivision(segmentPrefixLength).ToIPv6()
}
// ToNetworkSegment returns a segment with the network bits matching this segment but the host bits converted to zero.
// The new segment will have no assigned prefix length.
func (seg *IPv6AddressSegment) ToNetworkSegment(segmentPrefixLength PrefixLen) *IPv6AddressSegment {
return seg.init().toNetworkDivision(segmentPrefixLength, false).ToIPv6()
}
// ToPrefixedHostSegment returns a segment with the host bits matching this segment but the network bits converted to zero.
// The new segment will be assigned the given prefix length.
func (seg *IPv6AddressSegment) ToPrefixedHostSegment(segmentPrefixLength PrefixLen) *IPv6AddressSegment {
return seg.init().toPrefixedHostDivision(segmentPrefixLength).ToIPv6()
}
// ToHostSegment returns a segment with the host bits matching this segment but the network bits converted to zero.
// The new segment will have no assigned prefix length.
func (seg *IPv6AddressSegment) ToHostSegment(segmentPrefixLength PrefixLen) *IPv6AddressSegment {
return seg.init().toHostDivision(segmentPrefixLength, false).ToIPv6()
}
// Iterator provides an iterator to iterate through the individual address segments of this address segment.
//
// When iterating, the prefix length is preserved. Remove it using WithoutPrefixLen prior to iterating if you wish to drop it from all individual address segments.
//
// Call IsMultiple to determine if this instance represents multiple address segments, or GetValueCount for the count.
func (seg *IPv6AddressSegment) Iterator() Iterator[*IPv6AddressSegment] {
if seg == nil {
return ipv6SegmentIterator{nilSegIterator()}
}
return ipv6SegmentIterator{seg.init().iterator()}
}
// PrefixBlockIterator provides an iterator to iterate through the individual prefix blocks, one for each prefix of this address segment.
// Each iterated address segment will be a prefix block with the same prefix length as this address segment.
//
// If this address segment has no prefix length, then this is equivalent to Iterator.
func (seg *IPv6AddressSegment) PrefixBlockIterator() Iterator[*IPv6AddressSegment] {
return ipv6SegmentIterator{seg.init().prefixBlockIterator()}
}
// PrefixedBlockIterator provides an iterator to iterate through the individual prefix blocks of the given prefix length in this segment,
// one for each prefix of this address or subnet.
//
// It is similar to PrefixBlockIterator except that this method allows you to specify the prefix length.
func (seg *IPv6AddressSegment) PrefixedBlockIterator(segmentPrefixLen BitCount) Iterator[*IPv6AddressSegment] {
return ipv6SegmentIterator{seg.init().prefixedBlockIterator(segmentPrefixLen)}
}
// PrefixIterator provides an iterator to iterate through the individual prefixes of this segment,
// each iterated element spanning the range of values for its prefix.
//
// It is similar to the prefix block iterator, except for possibly the first and last iterated elements, which might not be prefix blocks,
// instead constraining themselves to values from this segment.
//
// If this address segment has no prefix length, then this is equivalent to Iterator.
func (seg *IPv6AddressSegment) PrefixIterator() Iterator[*IPv6AddressSegment] {
return ipv6SegmentIterator{seg.init().prefixIterator()}
}
// IsPrefixed returns whether this segment has an associated prefix length.
func (seg *IPv6AddressSegment) IsPrefixed() bool {
return seg != nil && seg.isPrefixed()
}
// WithoutPrefixLen returns a segment with the same value range but without a prefix length.
func (seg *IPv6AddressSegment) WithoutPrefixLen() *IPv6AddressSegment {
if !seg.IsPrefixed() {
return seg
}
return seg.withoutPrefixLen().ToIPv6()
}
// Converts this IPv6 address segment into smaller segments,
// copying them into the given array starting at the given index.
//
// If a segment does not fit into the array because the segment index in the array is out of bounds of the array,
// then it is not copied.
//
// It is used to create both IPv4 and MAC segments.
func (seg *IPv6AddressSegment) visitSplitSegments(creator func(index int, value, upperValue SegInt, prefLen PrefixLen)) addrerr.IncompatibleAddressError {
if seg.isMultiple() {
return seg.visitSplitSegmentsMultiple(creator)
} else {
index := 0
bitSizeSplit := IPv6BitsPerSegment >> 1
myPrefix := seg.GetSegmentPrefixLen()
val := seg.highByte()
highPrefixBits := getSegmentPrefixLength(bitSizeSplit, myPrefix, 0)
creator(index, val, val, highPrefixBits)
index++
val = seg.lowByte()
lowPrefixBits := getSegmentPrefixLength(bitSizeSplit, myPrefix, 1)
creator(index, val, val, lowPrefixBits)
return nil
}
}
func (seg *IPv6AddressSegment) splitSegValues() (highLower, highUpper, lowLower, lowUpper SegInt, err addrerr.IncompatibleAddressError) {
val := seg.GetSegmentValue()
upperVal := seg.GetUpperSegmentValue()
highLower = highByteIpv6(val)
highUpper = highByteIpv6(upperVal)
lowLower = lowByteIpv6(val)
lowUpper = lowByteIpv6(upperVal)
if (highLower != highUpper) && (lowLower != 0 || lowUpper != 0xff) {
err = &incompatibleAddressError{addressError{key: "ipaddress.error.splitSeg"}}
}
return
}
// Used to create both IPv4 and MAC segments
func (seg *IPv6AddressSegment) visitSplitSegmentsMultiple(creator func(index int, value, upperValue SegInt, prefLen PrefixLen)) addrerr.IncompatibleAddressError {
myPrefix := seg.GetSegmentPrefixLen()
bitSizeSplit := BitCount(IPv6BitsPerSegment >> 1)
highLower, highUpper, lowLower, lowUpper, err := seg.splitSegValues()
if err != nil {
return err
}
highPrefixBits := getSegmentPrefixLength(bitSizeSplit, myPrefix, 0)
lowPrefixBits := getSegmentPrefixLength(bitSizeSplit, myPrefix, 1)
creator(0, highLower, highUpper, highPrefixBits)
creator(1, lowLower, lowUpper, lowPrefixBits)
return nil
}
func (seg *IPv6AddressSegment) highByte() SegInt {
return highByteIpv6(seg.GetSegmentValue())
}
func (seg *IPv6AddressSegment) lowByte() SegInt {
return lowByteIpv6(seg.GetSegmentValue())
}
func highByteIpv6(value SegInt) SegInt {
return value >> 8
}
func lowByteIpv6(value SegInt) SegInt {
return value & 0xff
}
// Converts this IPv6 address segment into smaller segments,
// copying them into the given array starting at the given index.
//
// If a segment does not fit into the array because the segment index in the array is out of bounds of the array,
// then it is not copied.
func (seg *IPv6AddressSegment) getSplitSegments(segs []*IPv4AddressSegment, startIndex int) addrerr.IncompatibleAddressError {
return seg.visitSplitSegments(func(index int, value, upperValue SegInt, prefLen PrefixLen) {
if ind := startIndex + index; ind < len(segs) {
segs[ind] = NewIPv4RangePrefixedSegment(IPv4SegInt(value), IPv4SegInt(upperValue), prefLen)
}
})
}
func (seg *IPv6AddressSegment) splitIntoIPv4Segments(segs []*AddressDivision, startIndex int) addrerr.IncompatibleAddressError {
return seg.visitSplitSegments(func(index int, value, upperValue SegInt, prefLen PrefixLen) {
if ind := startIndex + index; ind < len(segs) {
segs[ind] = NewIPv4RangePrefixedSegment(IPv4SegInt(value), IPv4SegInt(upperValue), prefLen).ToDiv()
}
})
}
func (seg *IPv6AddressSegment) splitIntoMACSegments(segs []*AddressDivision, startIndex int) addrerr.IncompatibleAddressError {
return seg.visitSplitSegments(func(index int, value, upperValue SegInt, prefLen PrefixLen) {
if ind := startIndex + index; ind < len(segs) {
segs[ind] = NewMACRangeSegment(MACSegInt(value), MACSegInt(upperValue)).ToDiv()
}
})
}
// ReverseBits returns a segment with the bits reversed.
//
// If this segment represents a range of values that cannot be reversed, then this returns an error.
//
// To be reversible, a range must include all values except possibly the largest and/or smallest, which reverse to themselves.
// Otherwise the result is not contiguous and thus cannot be represented by a sequential range of values.
//
// If perByte is true, the bits are reversed within each byte, otherwise all the bits are reversed.
//
// If perByte is true, the bits are reversed within each byte, otherwise all the bits are reversed.
func (seg *IPv6AddressSegment) ReverseBits(perByte bool) (res *IPv6AddressSegment, err addrerr.IncompatibleAddressError) {
if seg.divisionValues == nil {
res = seg
return
}
if seg.isMultiple() {
var addrSeg *AddressSegment
addrSeg, err = seg.reverseMultiValSeg(perByte)
res = addrSeg.ToIPv6()
return
}
oldVal := IPv6SegInt(seg.GetSegmentValue())
val := IPv6SegInt(reverseUint16(uint16(oldVal)))
if perByte {
val = ((val & 0xff) << 8) | (val >> 8)
}
if oldVal == val && !seg.isPrefixed() {
res = seg
} else {
res = NewIPv6Segment(val)
}
return
}
// ReverseBytes returns a segment with the bytes reversed.
//
// If this segment represents a range of values that cannot be reversed, then this returns an error.
//
// To be reversible, a range must include all values except possibly the largest and/or smallest, which reverse to themselves.
// Otherwise the result is not contiguous and thus cannot be represented by a sequential range of values.
func (seg *IPv6AddressSegment) ReverseBytes() (res *IPv6AddressSegment, err addrerr.IncompatibleAddressError) {
if seg.divisionValues == nil {
res = seg
return
}
if seg.isMultiple() {
var addrSeg *AddressSegment
addrSeg, err = seg.reverseMultiValSeg(false)
res = addrSeg.ToIPv6()
return
}
oldVal := IPv6SegInt(seg.GetSegmentValue())
val := IPv6SegInt(reverseUint16(uint16(oldVal)))
if oldVal == val && !seg.isPrefixed() {
res = seg
} else {
res = NewIPv6Segment(val)
}
return
}
// ToDiv converts to an AddressDivision, a polymorphic type usable with all address segments and divisions.
// Afterwards, you can convert back with ToIPv6.
//
// ToDiv can be called with a nil receiver, enabling you to chain this method with methods that might return a nil pointer.
func (seg *IPv6AddressSegment) ToDiv() *AddressDivision {
return seg.ToIP().ToDiv()
}
// ToSegmentBase converts to an AddressSegment, a polymorphic type usable with all address segments.
// Afterwards, you can convert back with ToIPv6.
//
// ToSegmentBase can be called with a nil receiver, enabling you to chain this method with methods that might return a nil pointer.
func (seg *IPv6AddressSegment) ToSegmentBase() *AddressSegment {
return seg.ToIP().ToSegmentBase()
}
// ToIP converts to an IPAddressSegment, a polymorphic type usable with all IP address segments.
// Afterwards, you can convert back with ToIPv6.
//
// ToIP can be called with a nil receiver, enabling you to chain this method with methods that might return a nil pointer.
func (seg *IPv6AddressSegment) ToIP() *IPAddressSegment {
if seg == nil {
return nil
}
return (*IPAddressSegment)(seg.init())
}
// GetString produces a normalized string to represent the segment.
// If the segment is a CIDR network prefix block for its prefix length, then the string contains only the lower value of the block range.
// Otherwise, the explicit range will be printed.
//
// The string returned is useful in the context of creating strings for address sections or full addresses,
// in which case the radix and bit-length can be deduced from the context.
// The String method produces strings more appropriate when no context is provided.
func (seg *IPv6AddressSegment) GetString() string {
if seg == nil {
return nilString()
}
return seg.init().getString()
}
// GetWildcardString produces a normalized string to represent the segment, favouring wildcards and range characters while ignoring any network prefix length.
// The explicit range of a range-valued segment will be printed.
//
// The string returned is useful in the context of creating strings for address sections or full addresses,
// in which case the radix and the bit-length can be deduced from the context.
// The String method produces strings more appropriate when no context is provided.
func (seg *IPv6AddressSegment) GetWildcardString() string {
if seg == nil {
return nilString()
}
return seg.init().getWildcardString()
}
// String produces a string that is useful when a segment is provided with no context. It uses the hexadecimal radix with the string prefix for hex ("0x").
// GetWildcardString is more appropriate in context with other segments or divisions. It does not use a string prefix and uses '*' for full-range segments.
// GetString is more appropriate in context with prefix lengths, it uses zeros instead of wildcards with full prefix block ranges alongside prefix lengths.
func (seg *IPv6AddressSegment) String() string {
if seg == nil {
return nilString()
}
return seg.init().toString()
}
// NewIPv6Segment constructs a segment of an IPv6 address with the given value.
func NewIPv6Segment(val IPv6SegInt) *IPv6AddressSegment {
return newIPv6Segment(newIPv6SegmentVal(val))
}
// NewIPv6RangeSegment constructs a segment of an IPv6 subnet with the given range of sequential values.
func NewIPv6RangeSegment(val, upperVal IPv6SegInt) *IPv6AddressSegment {
return newIPv6Segment(newIPv6SegmentPrefixedValues(val, upperVal, nil))
}
// NewIPv6PrefixedSegment constructs a segment of an IPv6 address with the given value and assigned prefix length.
func NewIPv6PrefixedSegment(val IPv6SegInt, prefixLen PrefixLen) *IPv6AddressSegment {
return newIPv6Segment(newIPv6SegmentPrefixedVal(val, prefixLen))
}
// NewIPv6RangePrefixedSegment constructs a segment of an IPv6 subnet with the given range of sequential values and assigned prefix length.
func NewIPv6RangePrefixedSegment(val, upperVal IPv6SegInt, prefixLen PrefixLen) *IPv6AddressSegment {
return newIPv6Segment(newIPv6SegmentPrefixedValues(val, upperVal, prefixLen))
}
func newIPv6Segment(vals *ipv6SegmentValues) *IPv6AddressSegment {
return &IPv6AddressSegment{
ipAddressSegmentInternal{
addressSegmentInternal{
addressDivisionInternal{
addressDivisionBase{vals},
},
},
},
}
}
type ipv6DivsBlock struct {
block []ipv6SegmentValues
}
type ipv6DivsPartition struct {
block []*ipv6DivsBlock
}
var (
allRangeValsIPv6 = &ipv6SegmentValues{
upperValue: IPv6MaxValuePerSegment,
cache: divCache{
isSinglePrefBlock: &falseVal,
},
}
allPrefixedCacheIPv6 = makePrefixCacheIPv6()
// single-valued no-prefix cache.
// there are 0x10000 (ie 0xffff + 1 or 64k) possible segment values in IPv6. We break the cache into 0x100 blocks of size 0x100
segmentCacheIPv6 = make([]*ipv6DivsBlock, (IPv6MaxValuePerSegment>>8)+1)
// single-valued cache for each prefix.
segmentPrefixCacheIPv6 = make([]*ipv6DivsPartition, IPv6BitsPerSegment+1) // for each prefix, all segment values, 0x100 blocks of size 0x100
// prefix-block cache: all the prefix blocks for each prefix.
// for each prefix, all prefix blocks.
// For a given prefix, you shift left by 8 bits for the blocks of size 0x100, the remaining bits to the left are the number of blocks.
//
// For prefix of size 8, 1 block of size 0x100
// For prefix of size < 8, 1 block of size (1 << prefix)
// For prefix of size > 8, (1 << (prefix - 8)) blocks of size 0x100.
//
// So, you start with the prefix to get the right ipv6DivsPartition.
// Then, you use the formula above to look up the block index.
// For the first two above, the whole prefix finds the index into the single block.
// For the third, the 8 rightmost bits in the prefix give the index into the block of size ff,
// while the leftmost bits in the prefix select that block.
prefixBlocksCacheIPv6 = make([]*ipv6DivsPartition, IPv6BitsPerSegment+1)
)
func makePrefixCacheIPv6() (allPrefixedCacheIPv6 []ipv6SegmentValues) {
if useIPv6SegmentCache {
allPrefixedCacheIPv6 = make([]ipv6SegmentValues, IPv6BitsPerSegment+1)
for i := range allPrefixedCacheIPv6 {
vals := &allPrefixedCacheIPv6[i]
vals.upperValue = IPv6MaxValuePerSegment
vals.prefLen = cacheBitCount(i)
vals.cache.isSinglePrefBlock = &falseVal
}
allPrefixedCacheIPv6[0].cache.isSinglePrefBlock = &trueVal
}
return
}
func newIPv6SegmentVal(value IPv6SegInt) *ipv6SegmentValues {
if useIPv6SegmentCache {
cache := segmentCacheIPv6
blockIndex := value >> 8 // divide by 0x100
firstBlockVal := blockIndex << 8
resultIndex := value - firstBlockVal // mod 0x100
block := (*ipv6DivsBlock)(atomicLoadPointer((*unsafe.Pointer)(unsafe.Pointer(&cache[blockIndex]))))
//block := cache[blockIndex]
if block == nil {
block = &ipv6DivsBlock{make([]ipv6SegmentValues, 0x100)}
vals := block.block
for i := range vals {
item := &vals[i]
itemVal := firstBlockVal | IPv6SegInt(i)
item.value = itemVal
item.upperValue = itemVal
item.cache.isSinglePrefBlock = &falseVal
}
dataLoc := (*unsafe.Pointer)(unsafe.Pointer(&cache[blockIndex]))
atomicStorePointer(dataLoc, unsafe.Pointer(block))
}
result := &block.block[resultIndex]
return result
}
return &ipv6SegmentValues{
value: value,
upperValue: value,
cache: divCache{
isSinglePrefBlock: &falseVal,
},
}
}
func newIPv6SegmentPrefixedVal(value IPv6SegInt, prefLen PrefixLen) (result *ipv6SegmentValues) {
if prefLen == nil {
return newIPv6SegmentVal(value)
}
prefixIndex := prefLen.bitCount()
if prefixIndex < 0 {
prefixIndex = 0
} else if prefixIndex > IPv6BitsPerSegment {
prefixIndex = IPv6BitsPerSegment
}
prefLen = cacheBitCount(prefixIndex) // this ensures we use the prefix length cache for all segments
if useIPv6SegmentCache {
cache := segmentPrefixCacheIPv6
prefixCache := (*ipv6DivsPartition)(atomicLoadPointer((*unsafe.Pointer)(unsafe.Pointer(&cache[prefixIndex]))))
if prefixCache == nil {
prefixCache = &ipv6DivsPartition{make([]*ipv6DivsBlock, (IPv6MaxValuePerSegment>>8)+1)}
dataLoc := (*unsafe.Pointer)(unsafe.Pointer(&cache[prefixIndex]))
atomicStorePointer(dataLoc, unsafe.Pointer(prefixCache))
}
blockIndex := value >> 8 // divide by 0x100
firstBlockVal := blockIndex << 8
resultIndex := value - (firstBlockVal) // mod 0x100
blockCache := (*ipv6DivsBlock)(atomicLoadPointer((*unsafe.Pointer)(unsafe.Pointer(&prefixCache.block[blockIndex]))))
if blockCache == nil {
blockCache = &ipv6DivsBlock{make([]ipv6SegmentValues, (IPv6MaxValuePerSegment>>8)+1)}
vals := blockCache.block
var isSinglePrefBlock *bool
if prefixIndex == IPv6BitsPerSegment {
isSinglePrefBlock = &trueVal
} else {
isSinglePrefBlock = &falseVal
}
for i := range vals {
item := &vals[i]
itemVal := firstBlockVal | IPv6SegInt(i)
item.value = itemVal
item.upperValue = itemVal
item.prefLen = prefLen
item.cache.isSinglePrefBlock = isSinglePrefBlock
}
dataLoc := (*unsafe.Pointer)(unsafe.Pointer(&prefixCache.block[blockIndex]))
atomicStorePointer(dataLoc, unsafe.Pointer(blockCache))
}
result := &blockCache.block[resultIndex]
return result
}
var isSinglePrefBlock *bool
if prefixIndex == IPv6BitsPerSegment {
isSinglePrefBlock = &trueVal
} else {
isSinglePrefBlock = &falseVal
}
return &ipv6SegmentValues{
value: value,
upperValue: value,
prefLen: prefLen,
cache: divCache{
isSinglePrefBlock: isSinglePrefBlock,
},
}
}
func newIPv6SegmentPrefixedValues(value, upperValue IPv6SegInt, prefLen PrefixLen) *ipv6SegmentValues {
var isSinglePrefBlock *bool
if prefLen == nil {
if value == upperValue {
return newIPv6SegmentVal(value)
} else if value > upperValue {
value, upperValue = upperValue, value
}
if useIPv6SegmentCache && value == 0 && upperValue == IPv6MaxValuePerSegment {
return allRangeValsIPv6
}
isSinglePrefBlock = &falseVal
} else {
if value == upperValue {
return newIPv6SegmentPrefixedVal(value, prefLen)
} else if value > upperValue {
value, upperValue = upperValue, value
}
prefixIndex := prefLen.bitCount()
if prefixIndex < 0 {
prefixIndex = 0
} else if prefixIndex > IPv6BitsPerSegment {
prefixIndex = IPv6BitsPerSegment
}
prefLen = cacheBitCount(prefixIndex) // this ensures we use the prefix length cache for all segments
if useIPv6SegmentCache {
shiftBits := uint(IPv6BitsPerSegment - prefixIndex)
nmask := ^IPv6SegInt(0) << shiftBits
prefixBlockLower := value & nmask
hmask := ^nmask
prefixBlockUpper := value | hmask
if value == prefixBlockLower && upperValue == prefixBlockUpper {
// cache is the prefix block for any prefix length
cache := prefixBlocksCacheIPv6
prefixCache := (*ipv6DivsPartition)(atomicLoadPointer((*unsafe.Pointer)(unsafe.Pointer(&cache[prefixIndex]))))
if prefixCache == nil {
if prefixIndex <= 8 { // 1 block of size (1 << prefix)
prefixCache = &ipv6DivsPartition{make([]*ipv6DivsBlock, 1)}
} else { // (1 << (prefix - 8)) blocks of size 0x100.
prefixCache = &ipv6DivsPartition{make([]*ipv6DivsBlock, 1<<uint(prefixIndex-8))}
}
dataLoc := (*unsafe.Pointer)(unsafe.Pointer(&cache[prefixIndex]))
atomicStorePointer(dataLoc, unsafe.Pointer(prefixCache))
}
valueIndex := value >> shiftBits
blockIndex := valueIndex >> 8 // divide by 0x100
firstBlockVal := blockIndex << 8
resultIndex := valueIndex - (firstBlockVal) // mod 0x100
blockCache := (*ipv6DivsBlock)(atomicLoadPointer((*unsafe.Pointer)(unsafe.Pointer(&prefixCache.block[blockIndex]))))
if blockCache == nil {
if prefixIndex <= 8 { // 1 block of size (1 << prefix)
blockCache = &ipv6DivsBlock{make([]ipv6SegmentValues, 1<<uint(prefixIndex))}
} else { // (1 << (prefix - 8)) blocks of size 0x100.
blockCache = &ipv6DivsBlock{make([]ipv6SegmentValues, 1<<8)}
}
vals := blockCache.block
for i := range vals {
item := &vals[i]
itemVal := (firstBlockVal | IPv6SegInt(i)) << shiftBits
item.value = itemVal
item.upperValue = itemVal | hmask
item.prefLen = prefLen
item.cache.isSinglePrefBlock = &trueVal
}
dataLoc := (*unsafe.Pointer)(unsafe.Pointer(&prefixCache.block[blockIndex]))
atomicStorePointer(dataLoc, unsafe.Pointer(blockCache))
}
result := &blockCache.block[resultIndex]
return result
}
if value == 0 {
// cache is 0-0xffff for any prefix length
if upperValue == IPv6MaxValuePerSegment {
result := &allPrefixedCacheIPv6[prefixIndex]
return result
}
}
isSinglePrefBlock = &falseVal
}
}
return &ipv6SegmentValues{
value: value,
upperValue: upperValue,
prefLen: prefLen,
cache: divCache{
isSinglePrefBlock: isSinglePrefBlock,
},
}
}
|