1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
|
//
// Copyright 2020-2022 Sean C Foley
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
package ipaddr
import (
"bytes"
"fmt"
"github.com/seancfoley/ipaddress-go/ipaddr/addrerr"
"math/big"
"strings"
"unsafe"
)
// BigDivInt is an unsigned integer type for unlimited size division values.
type BigDivInt = big.Int
func newLargeDivValue(value []byte, bitCount BitCount) *largeDivValues {
result := &largeDivValues{cache: divCache{}}
result.value, bitCount, result.maxValue = setVal(value, bitCount)
result.bitCount = bitCount
result.upperValue = result.value
result.upperValueMasked = result.upperValue
result.cache.isSinglePrefBlock = &falseVal
return result
}
func newLargeDivPrefixedValue(value []byte, prefLen PrefixLen, bitCount BitCount) *largeDivValues {
result := &largeDivValues{cache: divCache{}}
result.value, bitCount, result.maxValue = setVal(value, bitCount)
result.bitCount = bitCount
result.upperValue = result.value
prefLen = checkPrefLen(prefLen, bitCount)
result.prefLen = prefLen
if prefLen != nil {
if result.isPrefixBlock = prefLen.Len() == bitCount; result.isPrefixBlock {
result.cache.isSinglePrefBlock = &trueVal
result.upperValueMasked = result.upperValue
} else {
result.cache.isSinglePrefBlock = &falseVal
result.upperValueMasked = setUpperValueMasked(result.value, result.upperValue, prefLen, bitCount)
}
} else {
result.upperValueMasked = result.upperValue
result.cache.isSinglePrefBlock = &falseVal
}
return result
}
func newLargeDivValues(value, upperValue []byte, bitCount BitCount) *largeDivValues {
result := &largeDivValues{cache: divCache{}}
result.value, result.upperValue, bitCount, result.maxValue = setVals(value, upperValue, bitCount)
result.bitCount = bitCount
result.isMult = result.value != result.upperValue
result.upperValueMasked = result.upperValue
result.cache.isSinglePrefBlock = &falseVal
return result
}
func newLargeDivPrefixedValues(value, upperValue []byte, prefLen PrefixLen, bitCount BitCount) *largeDivValues {
result := &largeDivValues{cache: divCache{}}
result.value, result.upperValue, bitCount, result.maxValue = setVals(value, upperValue, bitCount)
result.bitCount = bitCount
prefLen = checkPrefLen(prefLen, bitCount)
result.prefLen = prefLen
result.isMult = result.value != result.upperValue
var isSinglePrefBlock bool
result.isPrefixBlock, isSinglePrefBlock, result.upperValueMasked =
setCachedPrefixValues(result.value, result.upperValue, result.maxValue, prefLen, bitCount)
if isSinglePrefBlock {
result.cache.isSinglePrefBlock = &trueVal
} else {
result.cache.isSinglePrefBlock = &falseVal
}
return result
}
func newLargeDivValuesDivIntUnchecked(value, upperValue DivInt, prefLen PrefixLen, bitCount BitCount) *largeDivValues {
result := &largeDivValues{
prefLen: prefLen,
bitCount: bitCount,
}
val := new(big.Int).SetUint64(uint64(value))
if value == upperValue {
result.value, result.upperValue = val, val
} else {
result.isMult = true
result.value, result.upperValue = val, new(big.Int).SetUint64(uint64(upperValue))
}
result.maxValue = setMax(result.upperValue, bitCount)
var isSinglePrefBlock bool
result.isPrefixBlock, isSinglePrefBlock, result.upperValueMasked =
setCachedPrefixValues(result.value, result.upperValue, result.maxValue, prefLen, bitCount)
if isSinglePrefBlock {
result.cache.isSinglePrefBlock = &trueVal
} else {
result.cache.isSinglePrefBlock = &falseVal
}
return result
}
func newLargeDivValuesUnchecked(value, upperValue, maxValue *BigDivInt, isMult bool, prefLen PrefixLen, bitCount BitCount) *largeDivValues {
result := &largeDivValues{
prefLen: prefLen,
bitCount: bitCount,
value: value,
upperValue: upperValue,
maxValue: maxValue,
isMult: isMult,
}
var isSinglePrefBlock bool
result.isPrefixBlock, isSinglePrefBlock, result.upperValueMasked =
setCachedPrefixValues(result.value, result.upperValue, result.maxValue, prefLen, bitCount)
if isSinglePrefBlock {
result.cache.isSinglePrefBlock = &trueVal
} else {
result.cache.isSinglePrefBlock = &falseVal
}
return result
}
type largeDivValues struct {
bitCount BitCount
value *BigDivInt
upperValue *BigDivInt // always points to value when single-valued
maxValue *BigDivInt
upperValueMasked *BigDivInt
isPrefixBlock bool // note that isSinglePrefBlock is in the divCache
isMult bool
prefLen PrefixLen
cache divCache
}
func (div *largeDivValues) getBitCount() BitCount {
return div.bitCount
}
func (div *largeDivValues) getByteCount() int {
return (int(div.getBitCount()) + 7) >> 3
}
func (div *largeDivValues) getDivisionPrefixLength() PrefixLen {
return div.prefLen
}
// for internal usage, this returns the cached value, so it cannot be changed nor returned to outside callers
// the only place we need to clone is the methods GetValue() and GetUpperValue() that return to elsewhere
func (div *largeDivValues) getValue() *BigDivInt {
return div.value
}
// for internal usage, this returns the cached value, so it cannot be changed nor returned to outside callers
// the only place we need to clone is the methods GetValue() and GetUpperValue() that return to elsewhere
func (div *largeDivValues) getUpperValue() *BigDivInt {
return div.upperValue
}
func (div *largeDivValues) includesZero() bool {
return bigIsZero(div.value)
}
func (div *largeDivValues) includesMax() bool {
return div.upperValue.Cmp(div.maxValue) == 0
}
func (div *largeDivValues) isMultiple() bool {
return div.isMult
}
func (div *largeDivValues) getCount() *big.Int {
var res big.Int
return res.Sub(div.upperValue, div.value).Add(&res, bigOneConst())
}
func (div *largeDivValues) calcBytesInternal() (bytes, upperBytes []byte) {
return div.value.Bytes(), div.upperValue.Bytes()
}
func (div *largeDivValues) bytesInternal(upper bool) (bytes []byte) {
if upper {
return div.upperValue.Bytes()
}
return div.value.Bytes()
}
func (div *largeDivValues) getCache() *divCache {
return &div.cache
}
func (div *largeDivValues) getAddrType() addrType {
return zeroType
}
func (div *largeDivValues) getDivisionValue() DivInt {
return DivInt(div.value.Uint64())
}
func (div *largeDivValues) getUpperDivisionValue() DivInt {
return DivInt(div.upperValue.Uint64())
}
func (div *largeDivValues) getSegmentValue() SegInt {
return SegInt(div.value.Uint64())
}
func (div *largeDivValues) getUpperSegmentValue() SegInt {
return SegInt(div.upperValue.Uint64())
}
func (div *largeDivValues) deriveNew(val, upperVal DivInt, prefLen PrefixLen) divisionValues {
return newLargeDivValuesDivIntUnchecked(val, upperVal, prefLen, div.bitCount)
}
func (div *largeDivValues) derivePrefixed(prefLen PrefixLen) divisionValues {
return newLargeDivValuesUnchecked(div.value, div.upperValue, div.maxValue, div.isMult, prefLen, div.bitCount)
}
func (div *largeDivValues) deriveNewMultiSeg(val, upperVal SegInt, prefLen PrefixLen) divisionValues {
return newLargeDivValuesDivIntUnchecked(DivInt(val), DivInt(upperVal), prefLen, div.bitCount)
}
func (div *largeDivValues) deriveNewSeg(val SegInt, prefLen PrefixLen) divisionValues {
return newLargeDivValuesDivIntUnchecked(DivInt(val), DivInt(val), prefLen, div.bitCount)
}
var _ divisionValues = &largeDivValues{}
func createLargeAddressDiv(vals divisionValues, defaultRadix int) *IPAddressLargeDivision {
res := &IPAddressLargeDivision{
addressLargeDivInternal{
addressDivisionBase: addressDivisionBase{vals},
},
}
if defaultRadix >= 2 {
res.defaultRadix = new(big.Int).SetInt64(int64(defaultRadix))
}
return res
}
type addressLargeDivInternal struct {
addressDivisionBase
defaultRadix *BigDivInt
}
func (div *addressLargeDivInternal) getDefaultRadix() int {
rad := div.defaultRadix
if rad == nil {
return 16 // use same default as other divisions when zero div
}
return int(rad.Int64())
}
func (div *addressLargeDivInternal) toLargeAddressDivision() *IPAddressLargeDivision {
return (*IPAddressLargeDivision)(unsafe.Pointer(div))
}
func (div *addressLargeDivInternal) getLargeDivValues() *largeDivValues {
vals := div.divisionValues
if vals == nil {
return nil
}
return vals.(*largeDivValues)
}
// returns the default radix for textual representations of divisions
func (div *addressLargeDivInternal) getBigDefaultTextualRadix() *big.Int {
if div.divisionValues == nil || div.defaultRadix == nil {
return bigSixteen() // use same default as other divisions when zero div
}
return div.defaultRadix
}
// returns the default radix for textual representations of divisions
func (div *addressLargeDivInternal) getDefaultTextualRadix() int {
if div.divisionValues == nil || div.defaultRadix == nil {
return 16 // use same default as other divisions when zero div
}
return int(div.defaultRadix.Int64())
}
// toString produces a string that is useful when a division string is provided with no context.
// It uses a string prefix for octal or hex ("0" or "0x"), and does not use the wildcard '*', because division size is variable, so '*' is ambiguous.
// GetWildcardString() is more appropriate in context with other segments or divisions. It does not use a string prefix and uses '*' for full-range segments.
// GetString() is more appropriate in context with prefix lengths, it uses zeros instead of wildcards for prefix block ranges.
func (div *addressLargeDivInternal) toString() string { // this can be moved to addressDivisionBase when we have ContainsPrefixBlock and similar methods implemented for big.Int in the base
return toString(div.toLargeAddressDivision())
}
// Format implements [fmt.Formatter] interface. It accepts the formats
// - 'v' for the default address and section format (either the normalized or canonical string),
// - 's' (string) for the same,
// - 'b' (binary), 'o' (octal with 0 prefix), 'O' (octal with 0o prefix),
// - 'd' (decimal), 'x' (lowercase hexadecimal), and
// - 'X' (uppercase hexadecimal).
// Also supported are some of fmt's format flags for integral types.
// Sign control is not supported since addresses and sections are never negative.
// '#' for an alternate format is supported, which adds a leading zero for octal, and for hexadecimal it adds
// a leading "0x" or "0X" for "%#x" and "%#X" respectively.
// Also supported is specification of minimum digits precision, output field width,
// space or zero padding, and '-' for left or right justification.
func (div addressLargeDivInternal) Format(state fmt.State, verb rune) {
switch verb {
case 's', 'v':
_, _ = state.Write([]byte(div.toString()))
return
}
// we try to filter through the flags provided to the DivInt values, as if the fmt string were applied to the int(s) directly
formatStr := flagsFromState(state, verb)
if div.isMultiple() {
formatStr = fmt.Sprintf("%s%c%s", formatStr, RangeSeparator, formatStr)
_, _ = state.Write([]byte(fmt.Sprintf(formatStr, div.getValue(), div.getUpperValue())))
} else {
_, _ = state.Write([]byte(fmt.Sprintf(formatStr, div.getValue())))
}
}
// NewIPAddressLargeDivision creates a division of the given arbitrary bit-length, assigning it the given value.
// If the value's bit length exceeds the given bit length, it is truncated.
func NewIPAddressLargeDivision(val []byte, bitCount BitCount, defaultRadix int) *IPAddressLargeDivision {
return createLargeAddressDiv(newLargeDivValue(val, bitCount), defaultRadix)
}
// NewIPAddressLargeRangeDivision creates a division of the given arbitrary bit-length, assigning it the given value range.
// If a value's bit length exceeds the given bit length, it is truncated.
func NewIPAddressLargeRangeDivision(val, upperVal []byte, bitCount BitCount, defaultRadix int) *IPAddressLargeDivision {
return createLargeAddressDiv(newLargeDivValues(val, upperVal, bitCount), defaultRadix)
}
// NewIPAddressLargePrefixDivision creates a division of the given arbitrary bit-length, assigning it the given value and prefix length.
// If the value's bit length exceeds the given bit length, it is truncated.
// If the prefix length exceeds the bit length, it is adjusted to the bit length. If the prefix length is negative, it is adjusted to zero.
func NewIPAddressLargePrefixDivision(val []byte, prefixLen PrefixLen, bitCount BitCount, defaultRadix int) *IPAddressLargeDivision {
return createLargeAddressDiv(newLargeDivPrefixedValue(val, prefixLen, bitCount), defaultRadix)
}
// NewIPAddressLargeRangePrefixDivision creates a division of the given arbitrary bit-length, assigning it the given value range and prefix length.
// If a value's bit length exceeds the given bit length, it is truncated.
// If the prefix length exceeds the bit length, it is adjusted to the bit length. If the prefix length is negative, it is adjusted to zero.
func NewIPAddressLargeRangePrefixDivision(val, upperVal []byte, prefixLen PrefixLen, bitCount BitCount, defaultRadix int) *IPAddressLargeDivision {
return createLargeAddressDiv(newLargeDivPrefixedValues(val, upperVal, prefixLen, bitCount), defaultRadix)
}
// IPAddressLargeDivision represents an arbitrary division of arbitrary bit-size in an address or address division grouping.
// It can contain a single value or a range of sequential values and it has an assigned bit length.
// Like all address components, it is immutable.
type IPAddressLargeDivision struct {
addressLargeDivInternal
}
// GetValue returns the lowest value in the address division range as a big integer.
func (div *IPAddressLargeDivision) GetValue() *BigDivInt {
return new(big.Int).Set(div.addressLargeDivInternal.GetValue())
}
// GetUpperValue returns the highest value in the address division range as a big integer.
func (div *IPAddressLargeDivision) GetUpperValue() *BigDivInt {
return new(big.Int).Set(div.addressLargeDivInternal.GetUpperValue())
}
// GetDivisionPrefixLen returns the network prefix for the division.
//
// The network prefix is 16 for an address like "1.2.0.0/16".
//
// When it comes to each address division or segment, the prefix for the division is the
// prefix obtained when applying the address or section prefix.
//
// For instance, consider the address "1.2.0.0/20".
// The first segment has no prefix because the address prefix 20 extends beyond the 8 bits in the first segment, it does not even apply to the segment.
// The second segment has no prefix because the address prefix extends beyond bits 9 to 16 which lie in the second segment, it does not apply to that segment either.
// The third segment has the prefix 4 because the address prefix 20 corresponds to the first 4 bits in the 3rd segment,
// which means that the first 4 bits are part of the network section of the address or segment.
// The last segment has the prefix 0 because not a single bit is in the network section of the address or segment
//
// The division prefixes applied across the address are: nil ... nil (1 to segment bit length) 0 ... 0.
//
// If the division has no prefix then nil is returned.
func (div *IPAddressLargeDivision) GetDivisionPrefixLen() PrefixLen {
return div.getDivisionPrefixLength()
}
// GetCount returns the count of possible distinct values for this division.
// If not representing multiple values, the count is 1.
//
// For instance, a division with the value range of 3-7 has count 5.
//
// Use IsMultiple if you simply want to know if the count is greater than 1.
func (div *IPAddressLargeDivision) GetCount() *big.Int {
if div == nil {
return bigZero()
}
return div.getCount()
}
// IsMultiple returns whether this division represents a sequential range of values, vs a single value
func (div *IPAddressLargeDivision) IsMultiple() bool {
return div != nil && div.isMultiple()
}
func testBigRangeMasks(lowerValue, upperValue, finalUpperValue, networkMask, hostMask *BigDivInt) bool {
var one, two big.Int
return lowerValue.CmpAbs(one.And(lowerValue, networkMask)) == 0 &&
finalUpperValue.CmpAbs(two.Or(upperValue, hostMask)) == 0
}
func testBigRange(lowerValue, upperValue, finalUpperValue *BigDivInt, bitCount, divisionPrefixLen BitCount) bool {
var networkMask, hostMask big.Int
networkMask.Lsh(bigMinusOneConst(), uint(bitCount-divisionPrefixLen))
hostMask.Not(&networkMask)
return testBigRangeMasks(lowerValue, upperValue, finalUpperValue, &networkMask, &hostMask)
}
// ContainsPrefixBlock returns whether the division range includes the block of values for the given prefix length.
func (div *IPAddressLargeDivision) ContainsPrefixBlock(prefixLen BitCount) bool {
bitCount := div.GetBitCount()
if prefixLen <= 0 {
return div.IsFullRange()
} else if prefixLen >= bitCount {
return true
}
lower, upper := div.getValue(), div.getUpperValue()
return testBigRange(lower, upper, upper, bitCount, prefixLen)
}
// ContainsSinglePrefixBlock returns whether the division range matches exactly the block of values for the given prefix length and has just a single prefix for that prefix length.
func (div *IPAddressLargeDivision) ContainsSinglePrefixBlock(prefixLen BitCount) bool {
bitCount := div.GetBitCount()
prefixLen = checkBitCount(prefixLen, bitCount)
if prefixLen == 0 {
return div.IsFullRange()
}
lower, upper := div.getValue(), div.getUpperValue()
return testBigRange(lower, lower, upper, bitCount, prefixLen)
}
// GetPrefixLenForSingleBlock returns a prefix length for which there is only one prefix in this division,
// and the range of values in this division matches the block of all values for that prefix.
//
// If the range of division values can be described this way, then this method returns the same value as GetMinPrefixLenForBlock.
//
// If no such prefix length exists, returns nil.
//
// If this division represents a single value, this returns the bit count of the segment.
func (div *IPAddressLargeDivision) GetPrefixLenForSingleBlock() PrefixLen {
prefLen := div.GetMinPrefixLenForBlock()
bitCount := div.GetBitCount()
if prefLen == bitCount {
if !div.IsMultiple() {
result := PrefixBitCount(prefLen)
return &result
}
} else {
lower, upper := div.getValue(), div.getUpperValue()
shift := uint(bitCount - prefLen)
var one, two big.Int
if one.Rsh(lower, shift).Cmp(two.Rsh(upper, shift)) == 0 {
result := PrefixBitCount(prefLen)
return &result
}
}
return nil
}
// GetMinPrefixLenForBlock returns the smallest prefix length such that this division includes the block of all values for that prefix length.
//
// If the entire range can be described this way, then this method returns the same value as GetPrefixLenForSingleBlock.
//
// There may be a single prefix, or multiple possible prefix values in this item for the returned prefix length.
// Use GetPrefixLenForSingleBlock to avoid the case of multiple prefix values.
//
// If this division represents a single value, this returns the bit count.
func (div *IPAddressLargeDivision) GetMinPrefixLenForBlock() BitCount {
result := div.GetBitCount()
if div.IsMultiple() {
lower, upper := div.getValue(), div.getUpperValue()
lowerZeros := lower.TrailingZeroBits()
if lowerZeros != 0 {
var upperNot big.Int
upperOnes := upperNot.Not(upper).TrailingZeroBits()
if upperOnes != 0 {
prefixedBitCount := BitCount(umin(lowerZeros, upperOnes))
result -= prefixedBitCount
}
}
}
return result
}
// Compare returns a negative integer, zero, or a positive integer if this address division is less than, equal, or greater than the given item.
// Any address item is comparable to any other. All address items use CountComparator to compare.
func (div *IPAddressLargeDivision) Compare(item AddressItem) int {
return CountComparator.Compare(div, item)
}
// CompareSize compares the counts of two items, the number of individual values within.
//
// Rather than calculating counts with GetCount, there can be more efficient ways of determining whether one represents more individual values than another.
//
// CompareSize returns a positive integer if this division has a larger count than the item given, zero if they are the same, or a negative integer if the other has a larger count.
func (div *IPAddressLargeDivision) CompareSize(other AddressItem) int {
if div == nil {
if isNilItem(other) {
return 0
}
// we have size 0, other has size >= 1
return -1
}
return compareCount(div, other)
}
// String produces a string that is useful when a division string is provided with no context.
// It uses a string prefix for octal or hex ("0" or "0x"), and does not use the wildcard '*', because division size is variable, so '*' is ambiguous.
// GetWildcardString is more appropriate in context with other segments or divisions. It does not use a string prefix and uses '*' for full-range segments.
// GetString is more appropriate in context with prefix lengths, it uses zeros instead of wildcards for prefix block ranges.
func (div *IPAddressLargeDivision) String() string {
if div == nil {
return nilString()
}
return div.toString()
}
func (div *IPAddressLargeDivision) getStringAsLower() string {
stringer := div.getDefaultLowerString
if div.divisionValues != nil {
if cache := div.getCache(); cache != nil {
return cacheStr(&cache.cachedString, stringer)
}
}
return stringer()
}
// GetString produces a normalized string to represent the segment.
// If the segment is an IP segment string with CIDR network prefix block for its prefix length, then the string contains only the lower value of the block range.
// Otherwise, the explicit range will be printed.
// If the segment is not an IP segment, then the string is the same as that produced by GetWildcardString.
//
// The string returned is useful in the context of creating strings for address sections or full addresses,
// in which case the radix and bit-length can be deduced from the context.
// The String method produces strings more appropriate when no context is provided.
func (div *IPAddressLargeDivision) GetString() string {
stringer := func() string {
if div.IsSinglePrefixBlock() || !div.isMultiple() { //covers the case of single addresses, when there is no prefix or the prefix is the bit count
return div.getDefaultLowerString()
} else {
if div.IsPrefixBlock() {
return div.getDefaultMaskedRangeString()
}
return div.getDefaultRangeString()
}
}
if div.divisionValues != nil {
if cache := div.getCache(); cache != nil {
return cacheStr(&cache.cachedString, stringer)
}
}
return stringer()
}
// GetWildcardString produces a normalized string to represent the segment, favouring wildcards and range characters regardless of any network prefix length.
// The explicit range of a range-valued segment will be printed.
//
// The string returned is useful in the context of creating strings for address sections or full addresses,
// in which case the radix and the bit-length can be deduced from the context.
// The String method produces strings more appropriate when no context is provided.
func (div *IPAddressLargeDivision) GetWildcardString() string {
stringer := func() string {
if !div.IsPrefixed() || !div.isMultiple() {
return div.GetString()
}
return div.getDefaultRangeString()
}
if div.divisionValues != nil {
if cache := div.getCache(); cache != nil {
return cacheStr(&cache.cachedWildcardString, stringer)
}
}
return stringer()
}
// IsSinglePrefix returns true if the division value range spans just a single prefix value for the given prefix length.
func (div *IPAddressLargeDivision) IsSinglePrefix(divisionPrefixLen BitCount) bool {
lower, upper := div.getValue(), div.getUpperValue()
bitCount := div.GetBitCount()
divisionPrefixLen = checkBitCount(divisionPrefixLen, bitCount)
shift := uint(bitCount - divisionPrefixLen)
var one, two big.Int
return one.Rsh(lower, shift).Cmp(two.Rsh(upper, shift)) == 0
}
func (div *IPAddressLargeDivision) getLowerStringLength(radix int) int {
return getBigDigitCount(div.getValue(), div.getBigRadix(radix))
}
func (div *IPAddressLargeDivision) getUpperStringLength(radix int) int {
return getBigDigitCount(div.getUpperValue(), div.getBigRadix(radix))
}
func (div *IPAddressLargeDivision) getLowerString(radix int, uppercase bool, appendable *strings.Builder) {
appendable.WriteString(div.toDefaultString(div.getValue(), radix, uppercase, 0))
}
func (div *IPAddressLargeDivision) getLowerStringChopped(radix int, choppedDigits int, uppercase bool, appendable *strings.Builder) {
appendable.WriteString(div.toDefaultString(div.getValue(), radix, uppercase, choppedDigits))
}
func (div *IPAddressLargeDivision) getUpperString(radix int, uppercase bool, appendable *strings.Builder) {
appendable.WriteString(div.toDefaultString(div.getUpperValue(), radix, uppercase, 0))
}
func (div *IPAddressLargeDivision) getUpperStringMasked(radix int, uppercase bool, appendable *strings.Builder) {
appendable.WriteString(div.toDefaultString(div.getLargeDivValues().upperValueMasked, radix, uppercase, 0))
}
func (div *IPAddressLargeDivision) toDefaultString(val *BigDivInt, radix int, uppercase bool, choppedDigits int) string {
return toDefaultBigString(val, div.getBigRadix(radix), uppercase, choppedDigits, getBigMaxDigitCount(radix, div.GetBitCount(), div.getLargeDivValues().maxValue))
}
func (div *IPAddressLargeDivision) getBigRadix(radix int) *big.Int {
defaultRadix := div.getDefaultTextualRadix()
if defaultRadix == radix {
return div.getBigDefaultTextualRadix()
}
return big.NewInt(int64(radix))
}
func (div *IPAddressLargeDivision) getSplitLowerString(radix int, choppedDigits int, uppercase bool, splitDigitSeparator byte, reverseSplitDigits bool, stringPrefix string, appendable *strings.Builder) {
var builder strings.Builder
div.getLowerStringChopped(radix, choppedDigits, uppercase, &builder)
str := builder.String()
length := len(str)
prefLen := len(stringPrefix)
for i := 0; i < length; i++ {
if i > 0 {
appendable.WriteByte(splitDigitSeparator)
}
if prefLen > 0 {
appendable.WriteString(stringPrefix)
}
if reverseSplitDigits {
appendable.WriteByte(str[length-i-1])
} else {
appendable.WriteByte(str[i])
}
}
}
func (div *IPAddressLargeDivision) getSplitRangeString(rangeSeparator string, wildcard string, radix int, uppercase bool, splitDigitSeparator byte, reverseSplitDigits bool, stringPrefix string, appendable *strings.Builder) addrerr.IncompatibleAddressError {
var lowerBuilder, upperBuilder strings.Builder
div.getLowerString(radix, uppercase, &lowerBuilder)
div.getUpperString(radix, uppercase, &upperBuilder)
diff := upperBuilder.Len() - lowerBuilder.Len()
if diff > 0 {
lowerStr := lowerBuilder.String()
lowerBuilder.Reset()
for ; diff > 0; diff-- {
lowerBuilder.WriteByte('0')
}
lowerBuilder.WriteString(lowerStr)
}
previousWasFull, nextMustBeFull := true, false
dig := getDigits(uppercase, radix)
zeroDigit := dig[0]
highestDigit := dig[radix-1]
lowerStr := lowerBuilder.String()
upperStr := upperBuilder.String()
length := len(lowerStr)
prefLen := len(stringPrefix)
for i := 0; i < length; i++ {
var index int
if reverseSplitDigits {
index = length - i - 1
} else {
index = 1
}
lower := lowerStr[index]
upper := upperStr[index]
if i > 0 {
appendable.WriteByte(splitDigitSeparator)
}
if lower == upper {
if nextMustBeFull {
return &incompatibleAddressError{addressError{key: "ipaddress.error.splitMismatch"}}
}
if prefLen > 0 {
appendable.WriteString(stringPrefix)
}
appendable.WriteByte(lower)
} else {
isFullRange := (lower == zeroDigit) && (upper == highestDigit)
if isFullRange {
appendable.WriteString(wildcard)
} else {
if nextMustBeFull {
return &incompatibleAddressError{addressError{key: "ipaddress.error.splitMismatch"}}
}
if prefLen > 0 {
appendable.WriteString(stringPrefix)
}
appendable.WriteByte(lower)
appendable.WriteString(rangeSeparator)
appendable.WriteByte(upper)
}
if reverseSplitDigits {
if !previousWasFull {
return &incompatibleAddressError{addressError{key: "ipaddress.error.splitMismatch"}}
}
previousWasFull = isFullRange
} else {
nextMustBeFull = true
}
}
}
return nil
}
func (div *IPAddressLargeDivision) getSplitRangeStringLength(rangeSeparator string, wildcard string, leadingZeroCount int, radix int, uppercase bool, splitDigitSeparator byte, reverseSplitDigits bool, stringPrefix string) int {
_, _, _ = rangeSeparator, splitDigitSeparator, reverseSplitDigits
digitsLength := -1
stringPrefixLength := len(stringPrefix)
var lowerBuilder, upperBuilder strings.Builder
div.getLowerString(radix, uppercase, &lowerBuilder)
div.getUpperString(radix, uppercase, &upperBuilder)
dig := getDigits(uppercase, radix)
zeroDigit := dig[0]
highestDigit := dig[radix-1]
remainingAfterLoop := leadingZeroCount
lowerStr := lowerBuilder.String()
upperStr := upperBuilder.String()
upperLength := len(upperStr)
lowerLength := len(lowerStr)
for i := 1; i < upperLength; i++ {
var lower byte
if i <= lowerLength {
lower = lowerStr[lowerLength-i]
}
upperIndex := upperLength - i
upper := upperStr[upperIndex]
isFullRange := (lower == zeroDigit) && (upper == highestDigit)
if isFullRange {
digitsLength += len(wildcard) + 1
} else if lower != upper {
digitsLength += (stringPrefixLength << 1) + 4 //1 for each digit, 1 for range separator, 1 for split digit separator
} else {
//this and any remaining must be singles
remainingAfterLoop += upperIndex + 1
break
}
}
if remainingAfterLoop > 0 {
digitsLength += remainingAfterLoop * (stringPrefixLength + 2) // one for each splitDigitSeparator, 1 for each digit
}
return digitsLength
}
func (div *IPAddressLargeDivision) getRangeDigitCount(radix int) int {
if !div.IsMultiple() {
return 0
}
val, upperVal := div.getValue(), div.getUpperValue()
count := 1
bigRadix := big.NewInt(int64(radix))
bigUpperDigit := big.NewInt(int64(radix - 1))
var quotient, upperQuotient, remainder big.Int
for {
quotient.QuoRem(val, bigRadix, &remainder)
if bigIsZero(&remainder) {
upperQuotient.QuoRem(upperVal, bigRadix, &remainder)
if remainder.CmpAbs(bigUpperDigit) == 0 {
val, upperVal = "ient, &upperQuotient
if val.CmpAbs(upperVal) == 0 {
return count
} else {
count++
continue
}
}
}
return 0
}
}
func (div *IPAddressLargeDivision) adjustLowerLeadingZeroCount(leadingZeroCount int, radix int) int {
return div.adjustLeadingZeroCount(leadingZeroCount, div.getValue(), radix)
}
func (div *IPAddressLargeDivision) adjustUpperLeadingZeroCount(leadingZeroCount int, radix int) int {
return div.adjustLeadingZeroCount(leadingZeroCount, div.getUpperValue(), radix)
}
func (div *IPAddressLargeDivision) adjustLeadingZeroCount(leadingZeroCount int, value *BigDivInt, radix int) int {
if leadingZeroCount < 0 {
width := div.getDigitCount(value, radix)
return max(0, div.getMaxDigitCountRadix(radix)-width)
}
return leadingZeroCount
}
func (div *IPAddressLargeDivision) getDigitCount(val *BigDivInt, radix int) int {
vals := div.divisionValues
if vals == nil {
return 1
}
var bigRadix *big.Int
if div.getDefaultTextualRadix() == radix {
bigRadix = div.getBigDefaultTextualRadix()
} else {
bigRadix = big.NewInt(int64(radix))
}
return getBigDigitCount(val, bigRadix)
}
func (div *IPAddressLargeDivision) getMaxDigitCountRadix(radix int) int {
bc := div.GetBitCount()
vals := div.getLargeDivValues()
var maxValue *BigDivInt
if vals == nil {
maxValue = bigZeroConst()
} else {
maxValue = vals.maxValue
}
return getBigMaxDigitCount(radix, bc, maxValue)
}
func (div *IPAddressLargeDivision) getMaxDigitCount() int {
rad := div.getDefaultTextualRadix()
bc := div.GetBitCount()
vals := div.getLargeDivValues()
var maxValue *BigDivInt
if vals == nil {
maxValue = bigZeroConst()
} else {
maxValue = vals.maxValue
}
return getBigMaxDigitCount(rad, bc, maxValue)
}
func (div *IPAddressLargeDivision) getDefaultLowerString() string {
val := div.GetValue()
rad := div.getBigDefaultTextualRadix()
mdg := div.getMaxDigitCount()
return toDefaultBigString(val, rad, false, 0, mdg)
}
func (div *IPAddressLargeDivision) getDefaultRangeString() string {
maxDigitCount := div.getMaxDigitCount()
radix := div.getBigDefaultTextualRadix()
return toDefaultBigString(div.getValue(), radix, false, 0, maxDigitCount) +
div.getDefaultRangeSeparatorString() +
toDefaultBigString(div.getUpperValue(), radix, false, 0, maxDigitCount)
}
func (div *IPAddressLargeDivision) getDefaultMaskedRangeString() string {
maxDigitCount := div.getMaxDigitCount()
radix := div.getBigDefaultTextualRadix()
return toDefaultBigString(div.getValue(), radix, false, 0, maxDigitCount) +
div.getDefaultRangeSeparatorString() +
toDefaultBigString(div.getLargeDivValues().upperValueMasked, radix, false, 0, maxDigitCount)
}
func (div *IPAddressLargeDivision) isExtendedDigits() bool {
return isExtendedDigits(div.getDefaultTextualRadix())
}
func (div *IPAddressLargeDivision) getDefaultRangeSeparatorString() string {
if div.isExtendedDigits() {
return ExtendedDigitsRangeSeparatorStr
}
return RangeSeparatorStr
}
// IsPrefixBlock returns whether the division has a prefix length and the division range includes the block of values for that prefix length.
// If the prefix length matches the bit count, this returns true.
func (div *IPAddressLargeDivision) IsPrefixBlock() bool {
return div.getLargeDivValues().isPrefixBlock
}
// IsSinglePrefixBlock returns whether the division range matches the block of values for its prefix length
func (div *IPAddressLargeDivision) IsSinglePrefixBlock() bool {
return *div.getLargeDivValues().cache.isSinglePrefBlock
}
// IsPrefixed returns whether this division has an associated prefix length.
// If so, the prefix length is given by GetDivisionPrefixLen()
func (div *IPAddressLargeDivision) IsPrefixed() bool {
return div.GetDivisionPrefixLen() != nil
}
// GetPrefixLen returns the network prefix for the division.
//
// The network prefix is 16 for an address like "1.2.0.0/16".
//
// When it comes to each address division or segment, the prefix for the division is the
// prefix obtained when applying the address or section prefix.
//
// For instance, consider the address "1.2.0.0/20".
// The first segment has no prefix because the address prefix 20 extends beyond the 8 bits in the first segment, it does not even apply to the segment.
// The second segment has no prefix because the address prefix extends beyond bits 9 to 16 which lie in the second segment, it does not apply to that segment either.
// The third segment has the prefix 4 because the address prefix 20 corresponds to the first 4 bits in the 3rd segment,
// which means that the first 4 bits are part of the network section of the address or segment.
// The last segment has the prefix 0 because not a single bit is in the network section of the address or segment
//
// The division prefixes applied across the address are: nil ... nil (1 to segment bit length) 0 ... 0.
//
// If the segment has no prefix then nil is returned.
func (div *IPAddressLargeDivision) GetPrefixLen() PrefixLen {
return div.getDivisionPrefixLength()
}
func (div *IPAddressLargeDivision) isNil() bool {
return div == nil
}
func setVal(valueBytes []byte, bitCount BitCount) (assignedValue *BigDivInt, assignedBitCount BitCount, maxVal *BigDivInt) {
if bitCount < 0 {
bitCount = 0
}
assignedBitCount = bitCount
maxLen := (bitCount + 7) >> 3
if len(valueBytes) >= maxLen {
valueBytes = valueBytes[:maxLen]
}
assignedValue = new(big.Int).SetBytes(valueBytes)
maxVal = setMax(assignedValue, bitCount)
return
}
func setVals(valueBytes []byte, upperBytes []byte, bitCount BitCount) (assignedValue, assignedUpper *BigDivInt, assignedBitCount BitCount, maxVal *BigDivInt) {
if bitCount < 0 {
bitCount = 0
}
assignedBitCount = bitCount
maxLen := (bitCount + 7) >> 3
if len(valueBytes) >= maxLen || len(upperBytes) >= maxLen {
extraBits := bitCount & 7
mask := byte(0xff)
if extraBits > 0 {
mask = ^(mask << uint(8-extraBits))
}
if len(valueBytes) >= maxLen {
valueBytes = valueBytes[len(valueBytes)-maxLen:]
b := valueBytes[0]
if b&mask != b {
valueBytes = cloneBytes(valueBytes)
valueBytes[0] &= mask
}
}
if len(upperBytes) >= maxLen {
upperBytes = upperBytes[len(upperBytes)-maxLen:]
b := upperBytes[0]
if b&mask != b {
upperBytes = cloneBytes(upperBytes)
upperBytes[0] &= mask
}
}
}
assignedValue = new(big.Int).SetBytes(valueBytes)
if upperBytes == nil || bytes.Compare(valueBytes, upperBytes) == 0 {
assignedUpper = assignedValue
} else {
assignedUpper = new(big.Int).SetBytes(upperBytes)
cmp := assignedValue.CmpAbs(assignedUpper)
if cmp == 0 {
assignedUpper = assignedValue
} else if cmp > 0 {
// flip them
assignedValue, assignedUpper = assignedUpper, assignedValue
}
}
maxVal = setMax(assignedUpper, bitCount)
return
}
func setMax(assignedUpper *BigDivInt, bitCount BitCount) (max *BigDivInt) {
var maxVal big.Int
max = maxVal.Lsh(bigOneConst(), uint(bitCount)).Sub(&maxVal, bigOneConst())
if max.CmpAbs(assignedUpper) == 0 {
max = assignedUpper
}
return
}
func setUpperValueMasked(value, upperValue *BigDivInt, prefLen PrefixLen, bitCount BitCount) *BigDivInt {
var networkMask big.Int
networkMask.Lsh(bigMinusOneConst(), uint(bitCount-prefLen.Len())).And(upperValue, &networkMask)
if networkMask.Cmp(upperValue) == 0 {
return upperValue
} else if networkMask.Cmp(value) == 0 {
return value
}
return &networkMask
}
func setCachedPrefixValues(value, upperValue, maxValue *BigDivInt, prefLen PrefixLen, bitCount BitCount) (isPrefixBlock, isSinglePrefBlock bool, upperValueMasked *BigDivInt) {
if prefLen != nil {
if prefLen.Len() == bitCount {
isPrefixBlock = true
isSinglePrefBlock = value == upperValue
upperValueMasked = upperValue
} else if prefLen.Len() == 0 {
valIsZero := bigIsZero(value)
isFullRange := valIsZero && upperValue == maxValue
isPrefixBlock = isFullRange
isSinglePrefBlock = isFullRange
if valIsZero {
upperValueMasked = value
} else {
upperValueMasked = bigZeroConst()
}
} else {
prefixLen := prefLen.Len()
isPrefixBlock = testBigRange(value, upperValue, upperValue, bitCount, prefixLen)
isSinglePrefBlock = testBigRange(value, value, upperValue, bitCount, prefixLen)
upperValueMasked = setUpperValueMasked(value, upperValue, prefLen, bitCount)
}
} else {
upperValueMasked = upperValue
}
return
}
|