File: largedivision.go

package info (click to toggle)
golang-github-seancfoley-ipaddress-go 1.5.4-3
  • links: PTS, VCS
  • area: main
  • in suites: experimental, forky, sid, trixie
  • size: 3,700 kB
  • sloc: makefile: 3
file content (1036 lines) | stat: -rw-r--r-- 39,001 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
//
// Copyright 2020-2022 Sean C Foley
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//

package ipaddr

import (
	"bytes"
	"fmt"
	"github.com/seancfoley/ipaddress-go/ipaddr/addrerr"
	"math/big"
	"strings"
	"unsafe"
)

// BigDivInt is an unsigned integer type for unlimited size division values.
type BigDivInt = big.Int

func newLargeDivValue(value []byte, bitCount BitCount) *largeDivValues {
	result := &largeDivValues{cache: divCache{}}
	result.value, bitCount, result.maxValue = setVal(value, bitCount)
	result.bitCount = bitCount
	result.upperValue = result.value
	result.upperValueMasked = result.upperValue
	result.cache.isSinglePrefBlock = &falseVal
	return result
}

func newLargeDivPrefixedValue(value []byte, prefLen PrefixLen, bitCount BitCount) *largeDivValues {
	result := &largeDivValues{cache: divCache{}}
	result.value, bitCount, result.maxValue = setVal(value, bitCount)
	result.bitCount = bitCount
	result.upperValue = result.value
	prefLen = checkPrefLen(prefLen, bitCount)
	result.prefLen = prefLen
	if prefLen != nil {
		if result.isPrefixBlock = prefLen.Len() == bitCount; result.isPrefixBlock {
			result.cache.isSinglePrefBlock = &trueVal
			result.upperValueMasked = result.upperValue
		} else {
			result.cache.isSinglePrefBlock = &falseVal
			result.upperValueMasked = setUpperValueMasked(result.value, result.upperValue, prefLen, bitCount)
		}
	} else {
		result.upperValueMasked = result.upperValue
		result.cache.isSinglePrefBlock = &falseVal
	}
	return result
}

func newLargeDivValues(value, upperValue []byte, bitCount BitCount) *largeDivValues {
	result := &largeDivValues{cache: divCache{}}
	result.value, result.upperValue, bitCount, result.maxValue = setVals(value, upperValue, bitCount)
	result.bitCount = bitCount
	result.isMult = result.value != result.upperValue
	result.upperValueMasked = result.upperValue
	result.cache.isSinglePrefBlock = &falseVal
	return result
}

func newLargeDivPrefixedValues(value, upperValue []byte, prefLen PrefixLen, bitCount BitCount) *largeDivValues {
	result := &largeDivValues{cache: divCache{}}
	result.value, result.upperValue, bitCount, result.maxValue = setVals(value, upperValue, bitCount)
	result.bitCount = bitCount
	prefLen = checkPrefLen(prefLen, bitCount)
	result.prefLen = prefLen
	result.isMult = result.value != result.upperValue

	var isSinglePrefBlock bool
	result.isPrefixBlock, isSinglePrefBlock, result.upperValueMasked =
		setCachedPrefixValues(result.value, result.upperValue, result.maxValue, prefLen, bitCount)
	if isSinglePrefBlock {
		result.cache.isSinglePrefBlock = &trueVal
	} else {
		result.cache.isSinglePrefBlock = &falseVal
	}
	return result
}

func newLargeDivValuesDivIntUnchecked(value, upperValue DivInt, prefLen PrefixLen, bitCount BitCount) *largeDivValues {
	result := &largeDivValues{
		prefLen:  prefLen,
		bitCount: bitCount,
	}
	val := new(big.Int).SetUint64(uint64(value))
	if value == upperValue {
		result.value, result.upperValue = val, val
	} else {
		result.isMult = true
		result.value, result.upperValue = val, new(big.Int).SetUint64(uint64(upperValue))
	}
	result.maxValue = setMax(result.upperValue, bitCount)
	var isSinglePrefBlock bool
	result.isPrefixBlock, isSinglePrefBlock, result.upperValueMasked =
		setCachedPrefixValues(result.value, result.upperValue, result.maxValue, prefLen, bitCount)
	if isSinglePrefBlock {
		result.cache.isSinglePrefBlock = &trueVal
	} else {
		result.cache.isSinglePrefBlock = &falseVal
	}
	return result
}

func newLargeDivValuesUnchecked(value, upperValue, maxValue *BigDivInt, isMult bool, prefLen PrefixLen, bitCount BitCount) *largeDivValues {
	result := &largeDivValues{
		prefLen:    prefLen,
		bitCount:   bitCount,
		value:      value,
		upperValue: upperValue,
		maxValue:   maxValue,
		isMult:     isMult,
	}
	var isSinglePrefBlock bool
	result.isPrefixBlock, isSinglePrefBlock, result.upperValueMasked =
		setCachedPrefixValues(result.value, result.upperValue, result.maxValue, prefLen, bitCount)
	if isSinglePrefBlock {
		result.cache.isSinglePrefBlock = &trueVal
	} else {
		result.cache.isSinglePrefBlock = &falseVal
	}
	return result
}

type largeDivValues struct {
	bitCount BitCount

	value      *BigDivInt
	upperValue *BigDivInt // always points to value when single-valued

	maxValue         *BigDivInt
	upperValueMasked *BigDivInt
	isPrefixBlock    bool // note that isSinglePrefBlock is in the divCache

	isMult  bool
	prefLen PrefixLen
	cache   divCache
}

func (div *largeDivValues) getBitCount() BitCount {
	return div.bitCount
}

func (div *largeDivValues) getByteCount() int {
	return (int(div.getBitCount()) + 7) >> 3
}

func (div *largeDivValues) getDivisionPrefixLength() PrefixLen {
	return div.prefLen
}

// for internal usage, this returns the cached value, so it cannot be changed nor returned to outside callers
// the only place we need to clone is the methods GetValue() and GetUpperValue() that return to elsewhere
func (div *largeDivValues) getValue() *BigDivInt {
	return div.value
}

// for internal usage, this returns the cached value, so it cannot be changed nor returned to outside callers
// the only place we need to clone is the methods GetValue() and GetUpperValue() that return to elsewhere
func (div *largeDivValues) getUpperValue() *BigDivInt {
	return div.upperValue
}

func (div *largeDivValues) includesZero() bool {
	return bigIsZero(div.value)
}

func (div *largeDivValues) includesMax() bool {
	return div.upperValue.Cmp(div.maxValue) == 0
}

func (div *largeDivValues) isMultiple() bool {
	return div.isMult
}

func (div *largeDivValues) getCount() *big.Int {
	var res big.Int
	return res.Sub(div.upperValue, div.value).Add(&res, bigOneConst())
}

func (div *largeDivValues) calcBytesInternal() (bytes, upperBytes []byte) {
	return div.value.Bytes(), div.upperValue.Bytes()
}

func (div *largeDivValues) bytesInternal(upper bool) (bytes []byte) {
	if upper {
		return div.upperValue.Bytes()
	}
	return div.value.Bytes()
}

func (div *largeDivValues) getCache() *divCache {
	return &div.cache
}

func (div *largeDivValues) getAddrType() addrType {
	return zeroType
}

func (div *largeDivValues) getDivisionValue() DivInt {
	return DivInt(div.value.Uint64())
}

func (div *largeDivValues) getUpperDivisionValue() DivInt {
	return DivInt(div.upperValue.Uint64())
}

func (div *largeDivValues) getSegmentValue() SegInt {
	return SegInt(div.value.Uint64())
}

func (div *largeDivValues) getUpperSegmentValue() SegInt {
	return SegInt(div.upperValue.Uint64())
}

func (div *largeDivValues) deriveNew(val, upperVal DivInt, prefLen PrefixLen) divisionValues {
	return newLargeDivValuesDivIntUnchecked(val, upperVal, prefLen, div.bitCount)
}

func (div *largeDivValues) derivePrefixed(prefLen PrefixLen) divisionValues {
	return newLargeDivValuesUnchecked(div.value, div.upperValue, div.maxValue, div.isMult, prefLen, div.bitCount)
}

func (div *largeDivValues) deriveNewMultiSeg(val, upperVal SegInt, prefLen PrefixLen) divisionValues {
	return newLargeDivValuesDivIntUnchecked(DivInt(val), DivInt(upperVal), prefLen, div.bitCount)
}

func (div *largeDivValues) deriveNewSeg(val SegInt, prefLen PrefixLen) divisionValues {
	return newLargeDivValuesDivIntUnchecked(DivInt(val), DivInt(val), prefLen, div.bitCount)
}

var _ divisionValues = &largeDivValues{}

func createLargeAddressDiv(vals divisionValues, defaultRadix int) *IPAddressLargeDivision {
	res := &IPAddressLargeDivision{
		addressLargeDivInternal{
			addressDivisionBase: addressDivisionBase{vals},
		},
	}
	if defaultRadix >= 2 {
		res.defaultRadix = new(big.Int).SetInt64(int64(defaultRadix))
	}
	return res
}

type addressLargeDivInternal struct {
	addressDivisionBase
	defaultRadix *BigDivInt
}

func (div *addressLargeDivInternal) getDefaultRadix() int {
	rad := div.defaultRadix
	if rad == nil {
		return 16 // use same default as other divisions when zero div
	}
	return int(rad.Int64())
}

func (div *addressLargeDivInternal) toLargeAddressDivision() *IPAddressLargeDivision {
	return (*IPAddressLargeDivision)(unsafe.Pointer(div))
}

func (div *addressLargeDivInternal) getLargeDivValues() *largeDivValues {
	vals := div.divisionValues
	if vals == nil {
		return nil
	}
	return vals.(*largeDivValues)
}

// returns the default radix for textual representations of divisions
func (div *addressLargeDivInternal) getBigDefaultTextualRadix() *big.Int {
	if div.divisionValues == nil || div.defaultRadix == nil {
		return bigSixteen() // use same default as other divisions when zero div
	}
	return div.defaultRadix
}

// returns the default radix for textual representations of divisions
func (div *addressLargeDivInternal) getDefaultTextualRadix() int {
	if div.divisionValues == nil || div.defaultRadix == nil {
		return 16 // use same default as other divisions when zero div
	}
	return int(div.defaultRadix.Int64())
}

// toString produces a string that is useful when a division string is provided with no context.
// It uses a string prefix for octal or hex ("0" or "0x"), and does not use the wildcard '*', because division size is variable, so '*' is ambiguous.
// GetWildcardString() is more appropriate in context with other segments or divisions.  It does not use a string prefix and uses '*' for full-range segments.
// GetString() is more appropriate in context with prefix lengths, it uses zeros instead of wildcards for prefix block ranges.
func (div *addressLargeDivInternal) toString() string { // this can be moved to addressDivisionBase when we have ContainsPrefixBlock and similar methods implemented for big.Int in the base
	return toString(div.toLargeAddressDivision())
}

// Format implements [fmt.Formatter] interface. It accepts the formats
//  - 'v' for the default address and section format (either the normalized or canonical string),
//  - 's' (string) for the same,
//  - 'b' (binary), 'o' (octal with 0 prefix), 'O' (octal with 0o prefix),
//  - 'd' (decimal), 'x' (lowercase hexadecimal), and
//  - 'X' (uppercase hexadecimal).
// Also supported are some of fmt's format flags for integral types.
// Sign control is not supported since addresses and sections are never negative.
// '#' for an alternate format is supported, which adds a leading zero for octal, and for hexadecimal it adds
// a leading "0x" or "0X" for "%#x" and "%#X" respectively.
// Also supported is specification of minimum digits precision, output field width,
// space or zero padding, and '-' for left or right justification.
func (div addressLargeDivInternal) Format(state fmt.State, verb rune) {
	switch verb {
	case 's', 'v':
		_, _ = state.Write([]byte(div.toString()))
		return
	}
	// we try to filter through the flags provided to the DivInt values, as if the fmt string were applied to the int(s) directly
	formatStr := flagsFromState(state, verb)
	if div.isMultiple() {
		formatStr = fmt.Sprintf("%s%c%s", formatStr, RangeSeparator, formatStr)
		_, _ = state.Write([]byte(fmt.Sprintf(formatStr, div.getValue(), div.getUpperValue())))
	} else {
		_, _ = state.Write([]byte(fmt.Sprintf(formatStr, div.getValue())))
	}
}

// NewIPAddressLargeDivision creates a division of the given arbitrary bit-length, assigning it the given value.
// If the value's bit length exceeds the given bit length, it is truncated.
func NewIPAddressLargeDivision(val []byte, bitCount BitCount, defaultRadix int) *IPAddressLargeDivision {
	return createLargeAddressDiv(newLargeDivValue(val, bitCount), defaultRadix)
}

// NewIPAddressLargeRangeDivision creates a division of the given arbitrary bit-length, assigning it the given value range.
// If a value's bit length exceeds the given bit length, it is truncated.
func NewIPAddressLargeRangeDivision(val, upperVal []byte, bitCount BitCount, defaultRadix int) *IPAddressLargeDivision {
	return createLargeAddressDiv(newLargeDivValues(val, upperVal, bitCount), defaultRadix)
}

// NewIPAddressLargePrefixDivision creates a division of the given arbitrary bit-length, assigning it the given value and prefix length.
// If the value's bit length exceeds the given bit length, it is truncated.
// If the prefix length exceeds the bit length, it is adjusted to the bit length.  If the prefix length is negative, it is adjusted to zero.
func NewIPAddressLargePrefixDivision(val []byte, prefixLen PrefixLen, bitCount BitCount, defaultRadix int) *IPAddressLargeDivision {
	return createLargeAddressDiv(newLargeDivPrefixedValue(val, prefixLen, bitCount), defaultRadix)
}

// NewIPAddressLargeRangePrefixDivision creates a division of the given arbitrary bit-length, assigning it the given value range and prefix length.
// If a value's bit length exceeds the given bit length, it is truncated.
// If the prefix length exceeds the bit length, it is adjusted to the bit length.  If the prefix length is negative, it is adjusted to zero.
func NewIPAddressLargeRangePrefixDivision(val, upperVal []byte, prefixLen PrefixLen, bitCount BitCount, defaultRadix int) *IPAddressLargeDivision {
	return createLargeAddressDiv(newLargeDivPrefixedValues(val, upperVal, prefixLen, bitCount), defaultRadix)
}

// IPAddressLargeDivision represents an arbitrary division of arbitrary bit-size in an address or address division grouping.
// It can contain a single value or a range of sequential values and it has an assigned bit length.
// Like all address components, it is immutable.
type IPAddressLargeDivision struct {
	addressLargeDivInternal
}

// GetValue returns the lowest value in the address division range as a big integer.
func (div *IPAddressLargeDivision) GetValue() *BigDivInt {
	return new(big.Int).Set(div.addressLargeDivInternal.GetValue())
}

// GetUpperValue returns the highest value in the address division range as a big integer.
func (div *IPAddressLargeDivision) GetUpperValue() *BigDivInt {
	return new(big.Int).Set(div.addressLargeDivInternal.GetUpperValue())
}

// GetDivisionPrefixLen returns the network prefix for the division.
//
// The network prefix is 16 for an address like "1.2.0.0/16".
//
// When it comes to each address division or segment, the prefix for the division is the
// prefix obtained when applying the address or section prefix.
//
// For instance, consider the address "1.2.0.0/20".
// The first segment has no prefix because the address prefix 20 extends beyond the 8 bits in the first segment, it does not even apply to the segment.
// The second segment has no prefix because the address prefix extends beyond bits 9 to 16 which lie in the second segment, it does not apply to that segment either.
// The third segment has the prefix 4 because the address prefix 20 corresponds to the first 4 bits in the 3rd segment,
// which means that the first 4 bits are part of the network section of the address or segment.
// The last segment has the prefix 0 because not a single bit is in the network section of the address or segment
//
// The division prefixes applied across the address are: nil ... nil (1 to segment bit length) 0 ... 0.
//
// If the division has no prefix then nil is returned.
func (div *IPAddressLargeDivision) GetDivisionPrefixLen() PrefixLen {
	return div.getDivisionPrefixLength()
}

// GetCount returns the count of possible distinct values for this division.
// If not representing multiple values, the count is 1.
//
// For instance, a division with the value range of 3-7 has count 5.
//
// Use IsMultiple if you simply want to know if the count is greater than 1.
func (div *IPAddressLargeDivision) GetCount() *big.Int {
	if div == nil {
		return bigZero()
	}
	return div.getCount()
}

// IsMultiple returns  whether this division represents a sequential range of values, vs a single value
func (div *IPAddressLargeDivision) IsMultiple() bool {
	return div != nil && div.isMultiple()
}

func testBigRangeMasks(lowerValue, upperValue, finalUpperValue, networkMask, hostMask *BigDivInt) bool {
	var one, two big.Int
	return lowerValue.CmpAbs(one.And(lowerValue, networkMask)) == 0 &&
		finalUpperValue.CmpAbs(two.Or(upperValue, hostMask)) == 0
}

func testBigRange(lowerValue, upperValue, finalUpperValue *BigDivInt, bitCount, divisionPrefixLen BitCount) bool {
	var networkMask, hostMask big.Int
	networkMask.Lsh(bigMinusOneConst(), uint(bitCount-divisionPrefixLen))
	hostMask.Not(&networkMask)
	return testBigRangeMasks(lowerValue, upperValue, finalUpperValue, &networkMask, &hostMask)
}

// ContainsPrefixBlock returns whether the division range includes the block of values for the given prefix length.
func (div *IPAddressLargeDivision) ContainsPrefixBlock(prefixLen BitCount) bool {
	bitCount := div.GetBitCount()
	if prefixLen <= 0 {
		return div.IsFullRange()
	} else if prefixLen >= bitCount {
		return true
	}
	lower, upper := div.getValue(), div.getUpperValue()
	return testBigRange(lower, upper, upper, bitCount, prefixLen)
}

// ContainsSinglePrefixBlock returns whether the division range matches exactly the block of values for the given prefix length and has just a single prefix for that prefix length.
func (div *IPAddressLargeDivision) ContainsSinglePrefixBlock(prefixLen BitCount) bool {
	bitCount := div.GetBitCount()
	prefixLen = checkBitCount(prefixLen, bitCount)
	if prefixLen == 0 {
		return div.IsFullRange()
	}
	lower, upper := div.getValue(), div.getUpperValue()
	return testBigRange(lower, lower, upper, bitCount, prefixLen)
}

// GetPrefixLenForSingleBlock returns a prefix length for which there is only one prefix in this division,
// and the range of values in this division matches the block of all values for that prefix.
//
// If the range of division values can be described this way, then this method returns the same value as GetMinPrefixLenForBlock.
//
// If no such prefix length exists, returns nil.
//
// If this division represents a single value, this returns the bit count of the segment.
func (div *IPAddressLargeDivision) GetPrefixLenForSingleBlock() PrefixLen {
	prefLen := div.GetMinPrefixLenForBlock()
	bitCount := div.GetBitCount()
	if prefLen == bitCount {
		if !div.IsMultiple() {
			result := PrefixBitCount(prefLen)
			return &result
		}
	} else {
		lower, upper := div.getValue(), div.getUpperValue()
		shift := uint(bitCount - prefLen)
		var one, two big.Int
		if one.Rsh(lower, shift).Cmp(two.Rsh(upper, shift)) == 0 {
			result := PrefixBitCount(prefLen)
			return &result
		}
	}
	return nil
}

// GetMinPrefixLenForBlock returns the smallest prefix length such that this division includes the block of all values for that prefix length.
//
// If the entire range can be described this way, then this method returns the same value as GetPrefixLenForSingleBlock.
//
// There may be a single prefix, or multiple possible prefix values in this item for the returned prefix length.
// Use GetPrefixLenForSingleBlock to avoid the case of multiple prefix values.
//
// If this division represents a single value, this returns the bit count.
func (div *IPAddressLargeDivision) GetMinPrefixLenForBlock() BitCount {
	result := div.GetBitCount()
	if div.IsMultiple() {
		lower, upper := div.getValue(), div.getUpperValue()
		lowerZeros := lower.TrailingZeroBits()
		if lowerZeros != 0 {
			var upperNot big.Int
			upperOnes := upperNot.Not(upper).TrailingZeroBits()
			if upperOnes != 0 {
				prefixedBitCount := BitCount(umin(lowerZeros, upperOnes))
				result -= prefixedBitCount
			}
		}
	}
	return result
}

// Compare returns a negative integer, zero, or a positive integer if this address division is less than, equal, or greater than the given item.
// Any address item is comparable to any other.  All address items use CountComparator to compare.
func (div *IPAddressLargeDivision) Compare(item AddressItem) int {
	return CountComparator.Compare(div, item)
}

// CompareSize compares the counts of two items, the number of individual values within.
//
// Rather than calculating counts with GetCount, there can be more efficient ways of determining whether one represents more individual values than another.
//
// CompareSize returns a positive integer if this division has a larger count than the item given, zero if they are the same, or a negative integer if the other has a larger count.
func (div *IPAddressLargeDivision) CompareSize(other AddressItem) int {
	if div == nil {
		if isNilItem(other) {
			return 0
		}
		// we have size 0, other has size >= 1
		return -1
	}
	return compareCount(div, other)
}

// String produces a string that is useful when a division string is provided with no context.
// It uses a string prefix for octal or hex ("0" or "0x"), and does not use the wildcard '*', because division size is variable, so '*' is ambiguous.
// GetWildcardString is more appropriate in context with other segments or divisions.  It does not use a string prefix and uses '*' for full-range segments.
// GetString is more appropriate in context with prefix lengths, it uses zeros instead of wildcards for prefix block ranges.
func (div *IPAddressLargeDivision) String() string {
	if div == nil {
		return nilString()
	}
	return div.toString()
}

func (div *IPAddressLargeDivision) getStringAsLower() string {
	stringer := div.getDefaultLowerString
	if div.divisionValues != nil {
		if cache := div.getCache(); cache != nil {
			return cacheStr(&cache.cachedString, stringer)
		}
	}
	return stringer()
}

// GetString produces a normalized string to represent the segment.
// If the segment is an IP segment string with CIDR network prefix block for its prefix length, then the string contains only the lower value of the block range.
// Otherwise, the explicit range will be printed.
// If the segment is not an IP segment, then the string is the same as that produced by GetWildcardString.
//
// The string returned is useful in the context of creating strings for address sections or full addresses,
// in which case the radix and bit-length can be deduced from the context.
// The String method produces strings more appropriate when no context is provided.
func (div *IPAddressLargeDivision) GetString() string {
	stringer := func() string {
		if div.IsSinglePrefixBlock() || !div.isMultiple() { //covers the case of single addresses, when there is no prefix or the prefix is the bit count
			return div.getDefaultLowerString()
		} else {
			if div.IsPrefixBlock() {
				return div.getDefaultMaskedRangeString()
			}
			return div.getDefaultRangeString()
		}
	}
	if div.divisionValues != nil {
		if cache := div.getCache(); cache != nil {
			return cacheStr(&cache.cachedString, stringer)
		}
	}
	return stringer()
}

// GetWildcardString produces a normalized string to represent the segment, favouring wildcards and range characters regardless of any network prefix length.
// The explicit range of a range-valued segment will be printed.
//
// The string returned is useful in the context of creating strings for address sections or full addresses,
// in which case the radix and the bit-length can be deduced from the context.
// The String method produces strings more appropriate when no context is provided.
func (div *IPAddressLargeDivision) GetWildcardString() string {
	stringer := func() string {
		if !div.IsPrefixed() || !div.isMultiple() {
			return div.GetString()
		}
		return div.getDefaultRangeString()
	}
	if div.divisionValues != nil {
		if cache := div.getCache(); cache != nil {
			return cacheStr(&cache.cachedWildcardString, stringer)
		}
	}
	return stringer()
}

// IsSinglePrefix returns true if the division value range spans just a single prefix value for the given prefix length.
func (div *IPAddressLargeDivision) IsSinglePrefix(divisionPrefixLen BitCount) bool {
	lower, upper := div.getValue(), div.getUpperValue()
	bitCount := div.GetBitCount()
	divisionPrefixLen = checkBitCount(divisionPrefixLen, bitCount)
	shift := uint(bitCount - divisionPrefixLen)
	var one, two big.Int
	return one.Rsh(lower, shift).Cmp(two.Rsh(upper, shift)) == 0
}

func (div *IPAddressLargeDivision) getLowerStringLength(radix int) int {
	return getBigDigitCount(div.getValue(), div.getBigRadix(radix))
}

func (div *IPAddressLargeDivision) getUpperStringLength(radix int) int {
	return getBigDigitCount(div.getUpperValue(), div.getBigRadix(radix))
}

func (div *IPAddressLargeDivision) getLowerString(radix int, uppercase bool, appendable *strings.Builder) {
	appendable.WriteString(div.toDefaultString(div.getValue(), radix, uppercase, 0))
}

func (div *IPAddressLargeDivision) getLowerStringChopped(radix int, choppedDigits int, uppercase bool, appendable *strings.Builder) {
	appendable.WriteString(div.toDefaultString(div.getValue(), radix, uppercase, choppedDigits))
}

func (div *IPAddressLargeDivision) getUpperString(radix int, uppercase bool, appendable *strings.Builder) {
	appendable.WriteString(div.toDefaultString(div.getUpperValue(), radix, uppercase, 0))
}

func (div *IPAddressLargeDivision) getUpperStringMasked(radix int, uppercase bool, appendable *strings.Builder) {
	appendable.WriteString(div.toDefaultString(div.getLargeDivValues().upperValueMasked, radix, uppercase, 0))
}

func (div *IPAddressLargeDivision) toDefaultString(val *BigDivInt, radix int, uppercase bool, choppedDigits int) string {
	return toDefaultBigString(val, div.getBigRadix(radix), uppercase, choppedDigits, getBigMaxDigitCount(radix, div.GetBitCount(), div.getLargeDivValues().maxValue))
}

func (div *IPAddressLargeDivision) getBigRadix(radix int) *big.Int {
	defaultRadix := div.getDefaultTextualRadix()
	if defaultRadix == radix {
		return div.getBigDefaultTextualRadix()
	}
	return big.NewInt(int64(radix))
}

func (div *IPAddressLargeDivision) getSplitLowerString(radix int, choppedDigits int, uppercase bool, splitDigitSeparator byte, reverseSplitDigits bool, stringPrefix string, appendable *strings.Builder) {
	var builder strings.Builder
	div.getLowerStringChopped(radix, choppedDigits, uppercase, &builder)
	str := builder.String()
	length := len(str)
	prefLen := len(stringPrefix)
	for i := 0; i < length; i++ {
		if i > 0 {
			appendable.WriteByte(splitDigitSeparator)
		}
		if prefLen > 0 {
			appendable.WriteString(stringPrefix)
		}
		if reverseSplitDigits {
			appendable.WriteByte(str[length-i-1])
		} else {
			appendable.WriteByte(str[i])
		}
	}
}

func (div *IPAddressLargeDivision) getSplitRangeString(rangeSeparator string, wildcard string, radix int, uppercase bool, splitDigitSeparator byte, reverseSplitDigits bool, stringPrefix string, appendable *strings.Builder) addrerr.IncompatibleAddressError {
	var lowerBuilder, upperBuilder strings.Builder
	div.getLowerString(radix, uppercase, &lowerBuilder)
	div.getUpperString(radix, uppercase, &upperBuilder)
	diff := upperBuilder.Len() - lowerBuilder.Len()
	if diff > 0 {
		lowerStr := lowerBuilder.String()
		lowerBuilder.Reset()
		for ; diff > 0; diff-- {
			lowerBuilder.WriteByte('0')
		}
		lowerBuilder.WriteString(lowerStr)
	}
	previousWasFull, nextMustBeFull := true, false
	dig := getDigits(uppercase, radix)
	zeroDigit := dig[0]
	highestDigit := dig[radix-1]
	lowerStr := lowerBuilder.String()
	upperStr := upperBuilder.String()
	length := len(lowerStr)
	prefLen := len(stringPrefix)
	for i := 0; i < length; i++ {
		var index int
		if reverseSplitDigits {
			index = length - i - 1
		} else {
			index = 1
		}
		lower := lowerStr[index]
		upper := upperStr[index]
		if i > 0 {
			appendable.WriteByte(splitDigitSeparator)
		}
		if lower == upper {
			if nextMustBeFull {
				return &incompatibleAddressError{addressError{key: "ipaddress.error.splitMismatch"}}
			}
			if prefLen > 0 {
				appendable.WriteString(stringPrefix)
			}
			appendable.WriteByte(lower)
		} else {
			isFullRange := (lower == zeroDigit) && (upper == highestDigit)
			if isFullRange {
				appendable.WriteString(wildcard)
			} else {
				if nextMustBeFull {
					return &incompatibleAddressError{addressError{key: "ipaddress.error.splitMismatch"}}
				}
				if prefLen > 0 {
					appendable.WriteString(stringPrefix)
				}
				appendable.WriteByte(lower)
				appendable.WriteString(rangeSeparator)
				appendable.WriteByte(upper)
			}
			if reverseSplitDigits {
				if !previousWasFull {
					return &incompatibleAddressError{addressError{key: "ipaddress.error.splitMismatch"}}
				}
				previousWasFull = isFullRange
			} else {
				nextMustBeFull = true
			}
		}
	}
	return nil
}

func (div *IPAddressLargeDivision) getSplitRangeStringLength(rangeSeparator string, wildcard string, leadingZeroCount int, radix int, uppercase bool, splitDigitSeparator byte, reverseSplitDigits bool, stringPrefix string) int {
	_, _, _ = rangeSeparator, splitDigitSeparator, reverseSplitDigits
	digitsLength := -1
	stringPrefixLength := len(stringPrefix)
	var lowerBuilder, upperBuilder strings.Builder
	div.getLowerString(radix, uppercase, &lowerBuilder)
	div.getUpperString(radix, uppercase, &upperBuilder)
	dig := getDigits(uppercase, radix)
	zeroDigit := dig[0]
	highestDigit := dig[radix-1]
	remainingAfterLoop := leadingZeroCount
	lowerStr := lowerBuilder.String()
	upperStr := upperBuilder.String()
	upperLength := len(upperStr)
	lowerLength := len(lowerStr)
	for i := 1; i < upperLength; i++ {
		var lower byte
		if i <= lowerLength {
			lower = lowerStr[lowerLength-i]
		}
		upperIndex := upperLength - i
		upper := upperStr[upperIndex]
		isFullRange := (lower == zeroDigit) && (upper == highestDigit)
		if isFullRange {
			digitsLength += len(wildcard) + 1
		} else if lower != upper {
			digitsLength += (stringPrefixLength << 1) + 4 //1 for each digit, 1 for range separator, 1 for split digit separator
		} else {
			//this and any remaining must be singles
			remainingAfterLoop += upperIndex + 1
			break
		}
	}
	if remainingAfterLoop > 0 {
		digitsLength += remainingAfterLoop * (stringPrefixLength + 2) // one for each splitDigitSeparator, 1 for each digit
	}
	return digitsLength
}

func (div *IPAddressLargeDivision) getRangeDigitCount(radix int) int {
	if !div.IsMultiple() {
		return 0
	}
	val, upperVal := div.getValue(), div.getUpperValue()
	count := 1
	bigRadix := big.NewInt(int64(radix))
	bigUpperDigit := big.NewInt(int64(radix - 1))
	var quotient, upperQuotient, remainder big.Int
	for {
		quotient.QuoRem(val, bigRadix, &remainder)
		if bigIsZero(&remainder) {
			upperQuotient.QuoRem(upperVal, bigRadix, &remainder)
			if remainder.CmpAbs(bigUpperDigit) == 0 {
				val, upperVal = &quotient, &upperQuotient
				if val.CmpAbs(upperVal) == 0 {
					return count
				} else {
					count++
					continue
				}
			}
		}
		return 0
	}
}

func (div *IPAddressLargeDivision) adjustLowerLeadingZeroCount(leadingZeroCount int, radix int) int {
	return div.adjustLeadingZeroCount(leadingZeroCount, div.getValue(), radix)
}

func (div *IPAddressLargeDivision) adjustUpperLeadingZeroCount(leadingZeroCount int, radix int) int {
	return div.adjustLeadingZeroCount(leadingZeroCount, div.getUpperValue(), radix)
}

func (div *IPAddressLargeDivision) adjustLeadingZeroCount(leadingZeroCount int, value *BigDivInt, radix int) int {
	if leadingZeroCount < 0 {
		width := div.getDigitCount(value, radix)
		return max(0, div.getMaxDigitCountRadix(radix)-width)
	}
	return leadingZeroCount
}

func (div *IPAddressLargeDivision) getDigitCount(val *BigDivInt, radix int) int {
	vals := div.divisionValues
	if vals == nil {
		return 1
	}
	var bigRadix *big.Int
	if div.getDefaultTextualRadix() == radix {
		bigRadix = div.getBigDefaultTextualRadix()
	} else {
		bigRadix = big.NewInt(int64(radix))
	}
	return getBigDigitCount(val, bigRadix)
}

func (div *IPAddressLargeDivision) getMaxDigitCountRadix(radix int) int {
	bc := div.GetBitCount()
	vals := div.getLargeDivValues()
	var maxValue *BigDivInt
	if vals == nil {
		maxValue = bigZeroConst()
	} else {
		maxValue = vals.maxValue
	}
	return getBigMaxDigitCount(radix, bc, maxValue)
}

func (div *IPAddressLargeDivision) getMaxDigitCount() int {
	rad := div.getDefaultTextualRadix()
	bc := div.GetBitCount()
	vals := div.getLargeDivValues()
	var maxValue *BigDivInt
	if vals == nil {
		maxValue = bigZeroConst()
	} else {
		maxValue = vals.maxValue
	}
	return getBigMaxDigitCount(rad, bc, maxValue)
}

func (div *IPAddressLargeDivision) getDefaultLowerString() string {
	val := div.GetValue()
	rad := div.getBigDefaultTextualRadix()
	mdg := div.getMaxDigitCount()
	return toDefaultBigString(val, rad, false, 0, mdg)
}

func (div *IPAddressLargeDivision) getDefaultRangeString() string {
	maxDigitCount := div.getMaxDigitCount()
	radix := div.getBigDefaultTextualRadix()
	return toDefaultBigString(div.getValue(), radix, false, 0, maxDigitCount) +
		div.getDefaultRangeSeparatorString() +
		toDefaultBigString(div.getUpperValue(), radix, false, 0, maxDigitCount)
}

func (div *IPAddressLargeDivision) getDefaultMaskedRangeString() string {
	maxDigitCount := div.getMaxDigitCount()
	radix := div.getBigDefaultTextualRadix()
	return toDefaultBigString(div.getValue(), radix, false, 0, maxDigitCount) +
		div.getDefaultRangeSeparatorString() +
		toDefaultBigString(div.getLargeDivValues().upperValueMasked, radix, false, 0, maxDigitCount)
}

func (div *IPAddressLargeDivision) isExtendedDigits() bool {
	return isExtendedDigits(div.getDefaultTextualRadix())
}

func (div *IPAddressLargeDivision) getDefaultRangeSeparatorString() string {
	if div.isExtendedDigits() {
		return ExtendedDigitsRangeSeparatorStr
	}
	return RangeSeparatorStr
}

// IsPrefixBlock returns whether the division has a prefix length and the division range includes the block of values for that prefix length.
// If the prefix length matches the bit count, this returns true.
func (div *IPAddressLargeDivision) IsPrefixBlock() bool {
	return div.getLargeDivValues().isPrefixBlock
}

// IsSinglePrefixBlock returns whether the division range matches the block of values for its prefix length
func (div *IPAddressLargeDivision) IsSinglePrefixBlock() bool {
	return *div.getLargeDivValues().cache.isSinglePrefBlock
}

// IsPrefixed returns whether this division has an associated prefix length.
// If so, the prefix length is given by GetDivisionPrefixLen()
func (div *IPAddressLargeDivision) IsPrefixed() bool {
	return div.GetDivisionPrefixLen() != nil
}

// GetPrefixLen returns the network prefix for the division.
//
// The network prefix is 16 for an address like "1.2.0.0/16".
//
// When it comes to each address division or segment, the prefix for the division is the
// prefix obtained when applying the address or section prefix.
//
// For instance, consider the address "1.2.0.0/20".
// The first segment has no prefix because the address prefix 20 extends beyond the 8 bits in the first segment, it does not even apply to the segment.
// The second segment has no prefix because the address prefix extends beyond bits 9 to 16 which lie in the second segment, it does not apply to that segment either.
// The third segment has the prefix 4 because the address prefix 20 corresponds to the first 4 bits in the 3rd segment,
// which means that the first 4 bits are part of the network section of the address or segment.
// The last segment has the prefix 0 because not a single bit is in the network section of the address or segment
//
// The division prefixes applied across the address are: nil ... nil (1 to segment bit length) 0 ... 0.
//
// If the segment has no prefix then nil is returned.
func (div *IPAddressLargeDivision) GetPrefixLen() PrefixLen {
	return div.getDivisionPrefixLength()
}

func (div *IPAddressLargeDivision) isNil() bool {
	return div == nil
}

func setVal(valueBytes []byte, bitCount BitCount) (assignedValue *BigDivInt, assignedBitCount BitCount, maxVal *BigDivInt) {
	if bitCount < 0 {
		bitCount = 0
	}
	assignedBitCount = bitCount
	maxLen := (bitCount + 7) >> 3
	if len(valueBytes) >= maxLen {
		valueBytes = valueBytes[:maxLen]
	}
	assignedValue = new(big.Int).SetBytes(valueBytes)
	maxVal = setMax(assignedValue, bitCount)
	return
}

func setVals(valueBytes []byte, upperBytes []byte, bitCount BitCount) (assignedValue, assignedUpper *BigDivInt, assignedBitCount BitCount, maxVal *BigDivInt) {
	if bitCount < 0 {
		bitCount = 0
	}
	assignedBitCount = bitCount
	maxLen := (bitCount + 7) >> 3
	if len(valueBytes) >= maxLen || len(upperBytes) >= maxLen {
		extraBits := bitCount & 7
		mask := byte(0xff)
		if extraBits > 0 {
			mask = ^(mask << uint(8-extraBits))
		}
		if len(valueBytes) >= maxLen {
			valueBytes = valueBytes[len(valueBytes)-maxLen:]
			b := valueBytes[0]
			if b&mask != b {
				valueBytes = cloneBytes(valueBytes)
				valueBytes[0] &= mask
			}
		}
		if len(upperBytes) >= maxLen {
			upperBytes = upperBytes[len(upperBytes)-maxLen:]
			b := upperBytes[0]
			if b&mask != b {
				upperBytes = cloneBytes(upperBytes)
				upperBytes[0] &= mask
			}
		}
	}
	assignedValue = new(big.Int).SetBytes(valueBytes)
	if upperBytes == nil || bytes.Compare(valueBytes, upperBytes) == 0 {
		assignedUpper = assignedValue
	} else {
		assignedUpper = new(big.Int).SetBytes(upperBytes)
		cmp := assignedValue.CmpAbs(assignedUpper)
		if cmp == 0 {
			assignedUpper = assignedValue
		} else if cmp > 0 {
			// flip them
			assignedValue, assignedUpper = assignedUpper, assignedValue
		}
	}
	maxVal = setMax(assignedUpper, bitCount)
	return
}

func setMax(assignedUpper *BigDivInt, bitCount BitCount) (max *BigDivInt) {
	var maxVal big.Int
	max = maxVal.Lsh(bigOneConst(), uint(bitCount)).Sub(&maxVal, bigOneConst())
	if max.CmpAbs(assignedUpper) == 0 {
		max = assignedUpper
	}
	return
}

func setUpperValueMasked(value, upperValue *BigDivInt, prefLen PrefixLen, bitCount BitCount) *BigDivInt {
	var networkMask big.Int
	networkMask.Lsh(bigMinusOneConst(), uint(bitCount-prefLen.Len())).And(upperValue, &networkMask)
	if networkMask.Cmp(upperValue) == 0 {
		return upperValue
	} else if networkMask.Cmp(value) == 0 {
		return value
	}
	return &networkMask
}

func setCachedPrefixValues(value, upperValue, maxValue *BigDivInt, prefLen PrefixLen, bitCount BitCount) (isPrefixBlock, isSinglePrefBlock bool, upperValueMasked *BigDivInt) {
	if prefLen != nil {
		if prefLen.Len() == bitCount {
			isPrefixBlock = true
			isSinglePrefBlock = value == upperValue
			upperValueMasked = upperValue
		} else if prefLen.Len() == 0 {
			valIsZero := bigIsZero(value)
			isFullRange := valIsZero && upperValue == maxValue
			isPrefixBlock = isFullRange
			isSinglePrefBlock = isFullRange
			if valIsZero {
				upperValueMasked = value
			} else {
				upperValueMasked = bigZeroConst()
			}
		} else {
			prefixLen := prefLen.Len()
			isPrefixBlock = testBigRange(value, upperValue, upperValue, bitCount, prefixLen)
			isSinglePrefBlock = testBigRange(value, value, upperValue, bitCount, prefixLen)
			upperValueMasked = setUpperValueMasked(value, upperValue, prefLen, bitCount)

		}
	} else {
		upperValueMasked = upperValue
	}
	return
}