1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
|
//
// Copyright 2020-2022 Sean C Foley
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
package ipaddr
import (
"math/big"
"math/bits"
)
var (
defaultMasker = extendedMaskerBase{maskerBase{true}}
defaultNonSequentialMasker = extendedMaskerBase{}
defaultOrMasker = bitwiseOrerBase{true}
defaultNonSequentialOrMasker = bitwiseOrerBase{}
)
// Masker is used to mask (apply bitwise conjunction) division and segment values.
type Masker interface {
// GetMaskedLower provides the lowest masked value, which is not necessarily the lowest value masked.
GetMaskedLower(value, maskValue uint64) uint64
// GetMaskedUpper provides the highest masked value, which is not necessarily the highest value masked.
GetMaskedUpper(upperValue, maskValue uint64) uint64
// IsSequential returns whether masking all values in the range results in a sequential set of values.
IsSequential() bool
}
type maskerBase struct {
isSequentialVal bool
}
// GetMaskedLower provides the lowest masked value, which is not necessarily the lowest value masked.
func (masker maskerBase) GetMaskedLower(value, maskValue uint64) uint64 {
return value & maskValue
}
// GetMaskedUpper provides the highest masked value, which is not necessarily the highest value masked.
func (masker maskerBase) GetMaskedUpper(upperValue, maskValue uint64) uint64 {
return upperValue & maskValue
}
// IsSequential returns whether masking all values in the range results in a sequential set of values.
func (masker maskerBase) IsSequential() bool {
return masker.isSequentialVal
}
var _ Masker = maskerBase{}
func newFullRangeMasker(fullRangeBit int, isSequential bool) Masker {
return fullRangeMasker{
fullRangeBit: fullRangeBit,
upperMask: ^uint64(0) >> uint(fullRangeBit),
maskerBase: maskerBase{isSequential},
}
}
// These can be cached by the int used to construct
type fullRangeMasker struct {
maskerBase
upperMask uint64 //upperMask = ~0L >>> fullRangeBit;
fullRangeBit int
}
// GetMaskedLower provides the lowest masked value, which is not necessarily the lowest value masked.
func (masker fullRangeMasker) GetMaskedLower(value, maskValue uint64) uint64 {
return masker.maskerBase.GetMaskedLower(value & ^masker.upperMask, maskValue)
}
// GetMaskedUpper provides the highest masked value, which is not necessarily the highest value masked.
func (masker fullRangeMasker) GetMaskedUpper(upperValue, maskValue uint64) uint64 {
return masker.maskerBase.GetMaskedUpper(upperValue|masker.upperMask, maskValue)
}
func newSpecificValueMasker(lower, upper uint64) Masker {
return specificValueMasker{lower: lower, upper: upper}
}
type specificValueMasker struct {
maskerBase
lower, upper uint64
}
// GetMaskedLower provides the lowest masked value, which is not necessarily the lowest value masked.
func (masker specificValueMasker) GetMaskedLower(value, maskValue uint64) uint64 {
return masker.maskerBase.GetMaskedLower(value, maskValue)
}
// GetMaskedUpper provides the highest masked value, which is not necessarily the highest value masked.
func (masker specificValueMasker) GetMaskedUpper(upperValue, maskValue uint64) uint64 {
return masker.maskerBase.GetMaskedUpper(upperValue, maskValue)
}
// Extended maskers for handling > 64 bits
//
// ExtendedMasker handles value masking for divisions with bit counts larger than 64 bits.
type ExtendedMasker interface {
Masker
GetExtendedMaskedLower(extendedValue, extendedMaskValue uint64) uint64
GetExtendedMaskedUpper(extendedUpperValue, extendedMaskValue uint64) uint64
}
type extendedMaskerBase struct {
maskerBase
}
// GetExtendedMaskedLower provides the lowest masked value, which is not necessarily the lowest value masked.
func (masker extendedMaskerBase) GetExtendedMaskedLower(extendedValue, extendedMaskValue uint64) uint64 {
return extendedValue & extendedMaskValue
}
// GetExtendedMaskedUpper provides the highest masked value, which is not necessarily the highest value masked.
func (masker extendedMaskerBase) GetExtendedMaskedUpper(extendedUpperValue, extendedMaskValue uint64) uint64 {
return extendedUpperValue & extendedMaskValue
}
var _ ExtendedMasker = extendedMaskerBase{}
var _ Masker = extendedMaskerBase{}
func newExtendedFullRangeMasker(fullRangeBit int, isSequential bool) ExtendedMasker {
var upperMask, extendedUpperMask uint64
if fullRangeBit >= 64 {
upperMask = ^uint64(0) >> (uint(fullRangeBit) - 64)
} else {
extendedUpperMask = ^uint64(0) >> uint(fullRangeBit)
upperMask = 0xffffffffffffffff
}
return extendedFullRangeMasker{
extendedUpperMask: extendedUpperMask,
upperMask: upperMask,
extendedMaskerBase: extendedMaskerBase{maskerBase{isSequential}},
}
}
// These can be cached by the int used to construct
type extendedFullRangeMasker struct {
extendedMaskerBase
upperMask, extendedUpperMask uint64
}
// GetMaskedLower provides the lowest masked value, which is not necessarily the lowest value masked.
func (masker extendedFullRangeMasker) GetMaskedLower(value, maskValue uint64) uint64 {
return masker.extendedMaskerBase.GetMaskedLower(value & ^masker.upperMask, maskValue)
}
// GetMaskedUpper provides the highest masked value, which is not necessarily the highest value masked.
func (masker extendedFullRangeMasker) GetMaskedUpper(upperValue, maskValue uint64) uint64 {
return masker.extendedMaskerBase.GetMaskedUpper(upperValue|masker.upperMask, maskValue)
}
// GetExtendedMaskedLower provides the lowest masked value, which is not necessarily the lowest value masked.
func (masker extendedFullRangeMasker) GetExtendedMaskedLower(extendedValue, extendedMaskValue uint64) uint64 {
return masker.extendedMaskerBase.GetExtendedMaskedLower(extendedValue & ^masker.extendedUpperMask, extendedMaskValue)
}
// GetExtendedMaskedUpper provides the highest masked value, which is not necessarily the highest value masked.
func (masker extendedFullRangeMasker) GetExtendedMaskedUpper(extendedUpperValue, extendedMaskValue uint64) uint64 {
return masker.extendedMaskerBase.GetExtendedMaskedUpper(extendedUpperValue|masker.extendedUpperMask, extendedMaskValue)
}
func newExtendedSpecificValueMasker(extendedLower, lower, extendedUpper, upper uint64) ExtendedMasker {
return extendedSpecificValueMasker{
extendedLower: extendedLower,
lower: lower,
extendedUpper: extendedUpper,
upper: upper,
}
}
// These can be cached by the int used to construct
type extendedSpecificValueMasker struct {
extendedMaskerBase
extendedLower, lower, extendedUpper, upper uint64
}
func (masker extendedSpecificValueMasker) GetMaskedLower(_, maskValue uint64) uint64 {
return masker.extendedMaskerBase.GetMaskedLower(masker.lower, maskValue)
}
func (masker extendedSpecificValueMasker) GetMaskedUpper(_, maskValue uint64) uint64 {
return masker.extendedMaskerBase.GetMaskedUpper(masker.upper, maskValue)
}
func (masker extendedSpecificValueMasker) GetExtendedMaskedLower(_, extendedMaskValue uint64) uint64 {
return masker.extendedMaskerBase.GetExtendedMaskedLower(masker.extendedLower, extendedMaskValue)
}
func (masker extendedSpecificValueMasker) GetExtendedMaskedUpper(_, extendedMaskValue uint64) uint64 {
return masker.extendedMaskerBase.GetExtendedMaskedUpper(masker.extendedUpper, extendedMaskValue)
}
func newWrappedMasker(masker Masker) ExtendedMasker {
return wrappedMasker{
extendedMaskerBase: extendedMaskerBase{maskerBase{masker.IsSequential()}},
masker: masker,
}
}
type wrappedMasker struct {
extendedMaskerBase
masker Masker
}
func (masker wrappedMasker) GetMaskedLower(value, maskValue uint64) uint64 {
return masker.masker.GetMaskedLower(value, maskValue)
}
func (masker wrappedMasker) GetMaskedUpper(upperValue, maskValue uint64) uint64 {
return masker.masker.GetMaskedUpper(upperValue, maskValue)
}
//
//
//
//
// BitwiseOrer is used for bitwise disjunction applied to division and segment values.
type BitwiseOrer interface {
// GetOredLower provides the lowest value after the disjunction, which is not necessarily the lowest value apriori.
GetOredLower(value, maskValue uint64) uint64
// GetOredUpper provides the highest value after the disjunction, which is not necessarily the highest value apriori.
GetOredUpper(upperValue, maskValue uint64) uint64
// IsSequential returns whether applying bitwise disjunction to all values in the range results in a sequential set of values.
IsSequential() bool
}
type bitwiseOrerBase struct {
isSequentialVal bool
}
func (masker bitwiseOrerBase) GetOredLower(value, maskValue uint64) uint64 {
return value | maskValue
}
func (masker bitwiseOrerBase) GetOredUpper(upperValue, maskValue uint64) uint64 {
return upperValue | maskValue
}
// IsSequential returns whether masking all values in the range results in a sequential set of values.
func (masker bitwiseOrerBase) IsSequential() bool {
return masker.isSequentialVal
}
var _ BitwiseOrer = bitwiseOrerBase{}
func newFullRangeBitwiseOrer(fullRangeBit int, isSequential bool) BitwiseOrer {
return fullRangeBitwiseOrer{
fullRangeBit: fullRangeBit,
upperMask: ^uint64(0) >> uint(fullRangeBit),
bitwiseOrerBase: bitwiseOrerBase{isSequential},
}
}
// These can be cached by the int used to construct
type fullRangeBitwiseOrer struct {
bitwiseOrerBase
upperMask uint64
fullRangeBit int
}
func (masker fullRangeBitwiseOrer) GetOredLower(value, maskValue uint64) uint64 {
return masker.bitwiseOrerBase.GetOredLower(value & ^masker.upperMask, maskValue)
}
func (masker fullRangeBitwiseOrer) GetOredUpper(upperValue, maskValue uint64) uint64 {
return masker.bitwiseOrerBase.GetOredUpper(upperValue|masker.upperMask, maskValue)
}
func newSpecificValueBitwiseOrer(lower, upper uint64) BitwiseOrer {
return specificValueBitwiseOrer{lower: lower, upper: upper}
}
type specificValueBitwiseOrer struct {
bitwiseOrerBase
lower, upper uint64
}
func (masker specificValueBitwiseOrer) GetOredLower(value, maskValue uint64) uint64 {
return masker.bitwiseOrerBase.GetOredLower(value, maskValue)
}
func (masker specificValueBitwiseOrer) GetOredUpper(upperValue, maskValue uint64) uint64 {
return masker.bitwiseOrerBase.GetOredUpper(upperValue, maskValue)
}
//
//
//
//
// MaskExtendedRange masks divisions with bit counts larger than 64 bits. Use MaskRange for smaller divisions.
func MaskExtendedRange(
value, extendedValue,
upperValue, extendedUpperValue,
maskValue, extendedMaskValue,
maxValue, extendedMaxValue uint64) ExtendedMasker {
//algorithm:
//here we find the highest bit that is part of the range, highestDifferingBitInRange (ie changes from lower to upper)
//then we find the highest bit in the mask that is 1 that is the same or below highestDifferingBitInRange (if such a bit exists)
//
//this gives us the highest bit that is part of the masked range (ie changes from lower to upper after applying the mask)
//if this latter bit exists, then any bit below it in the mask must be 1 to include the entire range.
extendedDiffering := extendedValue ^ extendedUpperValue
if extendedDiffering == 0 {
// the top is single-valued so just need to check the lower part
masker := MaskRange(value, upperValue, maskValue, maxValue)
if masker == defaultMasker {
return defaultMasker
}
return newWrappedMasker(masker)
}
if (maskValue == maxValue && extendedMaskValue == extendedMaxValue /* all ones mask */) ||
(maskValue == 0 && extendedMaskValue == 0 /* all zeros mask */) {
return defaultMasker
}
highestDifferingBitInRange := bits.LeadingZeros64(extendedDiffering)
extendedDifferingMasked := extendedMaskValue & (^uint64(0) >> uint(highestDifferingBitInRange))
var highestDifferingBitMasked int
if extendedDifferingMasked != 0 {
differingIsLowestBit := extendedDifferingMasked == 1
highestDifferingBitMasked = bits.LeadingZeros64(extendedDifferingMasked)
var maskedIsSequential bool
hostMask := ^uint64(0) >> uint(highestDifferingBitMasked+1)
if !differingIsLowestBit { // Anything below highestDifferingBitMasked in the mask must be ones.
//for the first mask bit that is 1, all bits that follow must also be 1
maskedIsSequential = (extendedMaskValue&hostMask) == hostMask && maskValue == maxValue //check if all ones below
} else {
maskedIsSequential = maskValue == maxValue
}
if value == 0 && extendedValue == 0 &&
upperValue == maxValue && extendedUpperValue == extendedMaxValue {
// full range
if maskedIsSequential {
return defaultMasker
}
return defaultNonSequentialMasker
}
if highestDifferingBitMasked > highestDifferingBitInRange {
if maskedIsSequential {
// We need to check that the range is larger enough that when chopping off the top it remains sequential
// Note: a count of 2 in the extended could equate to a count of 2 total!
// upper: xxxxxxx1 00000000
// lower: xxxxxxx0 11111111
// Or, it could be everything:
// upper: xxxxxxx1 11111111
// lower: xxxxxxx0 00000000
// So for that reason, we need to check the full count here and not just extended
countRequiredForSequential := bigOne()
countRequiredForSequential.Lsh(countRequiredForSequential, 128-uint(highestDifferingBitMasked))
var upperBig, lowerBig, val big.Int
upperBig.SetUint64(extendedUpperValue).Lsh(&upperBig, 64).Or(&upperBig, val.SetUint64(upperValue))
lowerBig.SetUint64(extendedValue).Lsh(&lowerBig, 64).Or(&lowerBig, val.SetUint64(value))
count := upperBig.Sub(&upperBig, &lowerBig).Add(&upperBig, bigOne())
maskedIsSequential = count.CmpAbs(countRequiredForSequential) >= 0
}
return newExtendedFullRangeMasker(highestDifferingBitMasked, maskedIsSequential)
} else if !maskedIsSequential {
var bigHostZeroed, bigHostMask, val big.Int
bigHostMask.SetUint64(hostMask).Lsh(&bigHostMask, 64).Or(&bigHostMask, val.SetUint64(^uint64(0)))
bigHostZeroed.Not(&bigHostMask)
var upperBig, lowerBig big.Int
upperBig.SetUint64(extendedUpperValue).Lsh(&upperBig, 64).Or(&upperBig, val.SetUint64(upperValue))
lowerBig.SetUint64(extendedValue).Lsh(&lowerBig, 64).Or(&lowerBig, val.SetUint64(value))
var upperToBeMaskedBig, lowerToBeMaskedBig, maskBig big.Int
upperToBeMaskedBig.And(&upperBig, &bigHostZeroed)
lowerToBeMaskedBig.Or(&lowerBig, &bigHostMask)
maskBig.SetUint64(extendedMaskValue).Lsh(&maskBig, 64).Or(&maskBig, val.SetUint64(maskValue))
for nextBit := 128 - (highestDifferingBitMasked + 1) - 1; nextBit >= 0; nextBit-- {
// check if the bit in the mask is 1
if maskBig.Bit(nextBit) != 0 {
val.Set(&upperToBeMaskedBig).SetBit(&val, nextBit, 1)
if val.CmpAbs(&upperBig) <= 0 {
upperToBeMaskedBig.Set(&val)
}
val.Set(&lowerToBeMaskedBig).SetBit(&val, nextBit, 0)
if val.CmpAbs(&lowerBig) >= 0 {
lowerToBeMaskedBig.Set(&val)
}
} //else
// keep our upperToBeMasked bit as 0
// keep our lowerToBeMasked bit as 1
}
var lowerMaskedBig, upperMaskedBig big.Int
lowerMaskedBig.Set(&lowerToBeMaskedBig).And(&lowerToBeMaskedBig, val.SetUint64(^uint64(0)))
upperMaskedBig.Set(&upperToBeMaskedBig).And(&upperToBeMaskedBig, &val)
return newExtendedSpecificValueMasker(
lowerToBeMaskedBig.Rsh(&lowerToBeMaskedBig, 64).Uint64(),
lowerMaskedBig.Uint64(),
upperToBeMaskedBig.Rsh(&upperToBeMaskedBig, 64).Uint64(),
upperMaskedBig.Uint64())
}
return defaultMasker
}
// When masking, the top becomes single-valued.
// We go to the lower values to find highestDifferingBitMasked.
// At this point, the highest differing bit in the lower range is 0
// and the highestDifferingBitMasked is the first 1 bit in the lower mask
if maskValue == 0 {
// the mask zeroes out everything,
return defaultMasker
}
maskedIsSequential := true
highestDifferingBitMaskedLow := bits.LeadingZeros64(maskValue)
if maskValue != maxValue && highestDifferingBitMaskedLow < 63 {
//for the first mask bit that is 1, all bits that follow must also be 1
hostMask := ^uint64(0) >> uint(highestDifferingBitMaskedLow+1) // this shift of since case of highestDifferingBitMaskedLow of 64 and 63 taken care of, so the shift is < 64
maskedIsSequential = (maskValue & hostMask) == hostMask //check if all ones below
}
if maskedIsSequential {
//Note: a count of 2 in the lower values could equate to a count of everything in the full range:
//upper: xxxxxx10 00000000
//lower: xxxxxxx0 11111111
//Another example:
//upper: xxxxxxx1 00000001
//lower: xxxxxxx0 00000000
//So for that reason, we need to check the full count here and not just lower values
//We need to check that the range is larger enough that when chopping off the top it remains sequential
countRequiredForSequential := bigOne()
countRequiredForSequential.Lsh(countRequiredForSequential, 64-uint(highestDifferingBitMaskedLow))
var upperBig, lowerBig, val big.Int
upperBig.SetUint64(extendedUpperValue).Lsh(&upperBig, 64).Or(&upperBig, val.SetUint64(upperValue))
lowerBig.SetUint64(extendedValue).Lsh(&lowerBig, 64).Or(&lowerBig, val.SetUint64(value))
count := upperBig.Sub(&upperBig, &lowerBig).Add(&upperBig, bigOne())
maskedIsSequential = count.CmpAbs(countRequiredForSequential) >= 0
}
highestDifferingBitMasked = highestDifferingBitMaskedLow + 64
return newExtendedFullRangeMasker(highestDifferingBitMasked, maskedIsSequential)
}
// MaskRange masks divisions with bit counts 64 bits or smaller. Use MaskExtendedRange for larger divisions.
func MaskRange(value, upperValue, maskValue, maxValue uint64) Masker {
if value == upperValue {
return defaultMasker
}
if maskValue == 0 || maskValue == maxValue {
return defaultMasker
}
//algorithm:
//here we find the highest bit that is part of the range, highestDifferingBitInRange (ie changes from lower to upper)
//then we find the highest bit in the mask that is 1 that is the same or below highestDifferingBitInRange (if such a bit exists)
//this gives us the highest bit that is part of the masked range (ie changes from lower to upper after applying the mask)
//if this latter bit exists, then any bit below it in the mask must be 1 to remain sequential.
differing := value ^ upperValue
if differing != 1 {
highestDifferingBitInRange := bits.LeadingZeros64(differing)
maskMask := ^uint64(0) >> uint(highestDifferingBitInRange)
differingMasked := maskValue & maskMask
foundDiffering := differingMasked != 0
if foundDiffering {
// Anything below highestDifferingBitMasked in the mask must be ones.
// Also, if we have masked out any 1 bit in the original, then anything that we do not mask out that follows must be all ones
highestDifferingBitMasked := bits.LeadingZeros64(differingMasked) // first one bit in the mask covering the range
var hostMask uint64
if highestDifferingBitMasked != 63 {
hostMask = ^uint64(0) >> uint(highestDifferingBitMasked+1)
}
//for the first mask bit that is 1, all bits that follow must also be 1
maskedIsSequential := (maskValue & hostMask) == hostMask
if maxValue == ^uint64(0) &&
(!maskedIsSequential || highestDifferingBitMasked > highestDifferingBitInRange) {
highestOneBit := bits.LeadingZeros64(upperValue)
// note we know highestOneBit < 64, otherwise differing would be 1 or 0
maxValue = ^uint64(0) >> uint(highestOneBit)
}
if value == 0 && upperValue == maxValue {
// full range
if maskedIsSequential {
return defaultMasker
} else {
return defaultNonSequentialMasker
}
}
if highestDifferingBitMasked > highestDifferingBitInRange {
if maskedIsSequential {
// the count will determine if the masked range is sequential
if highestDifferingBitMasked < 63 {
count := upperValue - value + 1
// if original range is 0xxxx to 1xxxx and our mask starts with a single 0 so the mask is 01111,
// then our new range covers 4 bits at most (could be less).
// If the range covers 4 bits, we need to know if that range covers the same count of values as 0000 to 1111.
// If so, the resulting range is not disjoint.
// How do we know the range is disjoint otherwise? We know because it has the values 1111 and 0000.
// In order to go from 0xxxx to 1xxxx you must cross the consecutive values 01111 and 10000.
// These values are consecutive in the original range (ie 01111 is followed by 10000) but in the new range
// they are farthest apart and we need the entire range to fill the gap between them.
// That count of values for the entire range is 1111 - 0000 + 1 = 10000
// So in this example, the first bit in the original range is bit 0, highestDifferingBitMasked is 1,
// and the range must cover 2 to the power of (5 - 1),
// or 2 to the power of bit count - highestDifferingBitMasked, or 1 shifted by that much.
countRequiredForSequential := uint64(1) << uint(64-highestDifferingBitMasked)
if count < countRequiredForSequential {
// the resulting masked values are disjoint, not sequential
maskedIsSequential = false
}
} // else count of 2 is good enough, even if the masked range does not cover both values, then the result is a single value, which is also sequential
// another way of looking at it: when the range is just two, we do not need to see if the masked range covers all values in between, as there is no values in between
}
// The range part of the values will go from 0 to the mask itself.
// This is because we know that if the range is 0xxxx... to 1yyyy..., then 01111... and 10000... are also in the range,
// since that is the only way to transition from 0xxxx... to 1yyyy...
// Because the mask has no 1 bit at the top bit, then we know that when masking with those two values 01111... and 10000...
// we get the mask itself and 00000 as the result.
return newFullRangeMasker(highestDifferingBitMasked, maskedIsSequential)
} else if !maskedIsSequential {
hostZeroed := ^hostMask
upperToBeMasked := upperValue & hostZeroed
lowerToBeMasked := value | hostMask
// we find a value in the range that will produce the highest and lowest values when masked
for nextBit := uint64(1) << (64 - uint(highestDifferingBitMasked+1) - 1); nextBit != 0; nextBit >>= 1 {
// check if the bit in the mask is 1
if (maskValue & nextBit) != 0 {
candidate := upperToBeMasked | nextBit
if candidate <= upperValue {
upperToBeMasked = candidate
}
candidate = lowerToBeMasked & ^nextBit
if candidate >= value {
lowerToBeMasked = candidate
}
} //else
// keep our upperToBeMasked bit as 0
// keep our lowerToBeMasked bit as 1
}
return newSpecificValueMasker(lowerToBeMasked, upperToBeMasked)
} // else fall through to default masker
}
}
return defaultMasker
}
func bitwiseOrRange(value, upperValue, maskValue, maxValue uint64) BitwiseOrer {
if value == upperValue {
return defaultOrMasker
}
// if(value > upperValue) {
// throw new IllegalArgumentException("value > upper value");
// }
if maskValue == 0 || maskValue == maxValue {
return defaultOrMasker
}
//algorithm:
//here we find the highest bit that is part of the range, highestDifferingBitInRange (ie changes from lower to upper)
//then we find the highest bit in the mask that is 0 that is the same or below highestDifferingBitInRange (if such a bit exists)
//this gives us the highest bit that is part of the masked range (ie changes from lower to upper after applying the mask)
//if this latter bit exists, then any bit below it in the mask must be 0 to include the entire range.
differing := value ^ upperValue
if differing != 1 {
highestDifferingBitInRange := bits.LeadingZeros64(differing)
maskMask := ^uint64(0) >> uint(highestDifferingBitInRange)
differingMasked := maskValue & maskMask
foundDiffering := differingMasked != maskMask // mask not all ones
if foundDiffering {
highestDifferingBitMasked := bits.LeadingZeros64(^differingMasked & maskMask) // first 0 bit in the part of the mask covering the range
var hostMask uint64
if highestDifferingBitMasked != 63 {
hostMask = ^uint64(0) >> uint(highestDifferingBitMasked+1)
}
maskedIsSequential := (maskValue & hostMask) == 0
if maxValue == ^uint64(0) &&
(!maskedIsSequential || highestDifferingBitMasked > highestDifferingBitInRange) {
highestOneBit := bits.LeadingZeros64(upperValue)
// note we know highestOneBit < 64, otherwise differing would be 1 or 0, so shift is OK
maxValue = ^uint64(0) >> uint(highestOneBit)
}
if value == 0 && upperValue == maxValue {
// full range
if maskedIsSequential {
return defaultOrMasker
} else {
return defaultNonSequentialOrMasker
}
}
if highestDifferingBitMasked > highestDifferingBitInRange {
if maskedIsSequential {
// the count will determine if the ored range is sequential
if highestDifferingBitMasked < 63 {
count := upperValue - value + 1
countRequiredForSequential := uint64(1) << uint(64-highestDifferingBitMasked)
if count < countRequiredForSequential {
// the resulting ored values are disjoint, not sequential
maskedIsSequential = false
}
}
}
return newFullRangeBitwiseOrer(highestDifferingBitMasked, maskedIsSequential)
} else if !maskedIsSequential {
hostZeroed := ^hostMask
upperToBeMasked := upperValue & hostZeroed
lowerToBeMasked := value | hostMask
for nextBit := uint64(1) << uint(64-(highestDifferingBitMasked+1)-1); nextBit != 0; nextBit >>= 1 {
// check if the bit in the mask is 0
if (maskValue & nextBit) == 0 {
candidate := upperToBeMasked | nextBit
if candidate <= upperValue {
upperToBeMasked = candidate
}
candidate = lowerToBeMasked & ^nextBit
if candidate >= value {
lowerToBeMasked = candidate
}
} //else
// keep our upperToBeMasked bit as 0
// keep our lowerToBeMasked bit as 1
}
return newSpecificValueBitwiseOrer(lowerToBeMasked, upperToBeMasked)
}
}
}
return defaultOrMasker
}
|