1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766
|
//
// Copyright 2020-2022 Sean C Foley
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
package ipaddr
import (
"fmt"
"math/big"
"strconv"
"unsafe"
"github.com/seancfoley/ipaddress-go/ipaddr/addrerr"
"github.com/seancfoley/ipaddress-go/ipaddr/addrstr"
)
var zeroSection = createSection(zeroDivs, nil, zeroType)
func createSection(segments []*AddressDivision, prefixLength PrefixLen, addrType addrType) *AddressSection {
sect := &AddressSection{
addressSectionInternal{
addressDivisionGroupingInternal{
addressDivisionGroupingBase: addressDivisionGroupingBase{
divisions: standardDivArray(segments),
prefixLength: prefixLength,
addrType: addrType,
cache: &valueCache{},
},
},
},
}
assignStringCache(§.addressDivisionGroupingBase, addrType)
return sect
}
// callers to this function supply segments with prefix length consistent with the supplied prefix length
func createSectionMultiple(segments []*AddressDivision, prefixLength PrefixLen, addrType addrType, isMultiple bool) *AddressSection {
result := createSection(segments, prefixLength, addrType)
result.isMult = isMultiple
return result
}
// callers to this function supply segments with prefix length consistent with the supplied prefix length
func createInitializedSection(segments []*AddressDivision, prefixLength PrefixLen, addrType addrType) *AddressSection {
result := createSection(segments, prefixLength, addrType)
result.initMultiple() // assigns isMultiple
return result
}
// callers to this function supply segments with prefix length consistent with the supplied prefix length
func deriveAddressSectionPrefLen(from *AddressSection, segments []*AddressDivision, prefixLength PrefixLen) *AddressSection {
result := createSection(segments, prefixLength, from.getAddrType())
result.initMultiple() // assigns isMultiple
return result
}
// callers to this function supply segments with prefix length consistent with the prefix length of this section
func deriveAddressSection(from *AddressSection, segments []*AddressDivision) (res *AddressSection) {
return deriveAddressSectionPrefLen(from, segments, from.prefixLength)
}
func assignStringCache(section *addressDivisionGroupingBase, addrType addrType) {
stringCache := §ion.cache.stringCache
if addrType.isIPv4() {
stringCache.ipStringCache = &ipStringCache{}
stringCache.ipv4StringCache = &ipv4StringCache{}
} else if addrType.isIPv6() {
stringCache.ipStringCache = &ipStringCache{}
stringCache.ipv6StringCache = &ipv6StringCache{}
} else if addrType.isMAC() {
stringCache.macStringCache = &macStringCache{}
}
}
//////////////////////////////////////////////////////////////////
//
//
//
type addressSectionInternal struct {
addressDivisionGroupingInternal
}
func (section *addressSectionInternal) initImplicitPrefLen(bitsPerSegment BitCount) {
segCount := section.GetSegmentCount()
if segCount != 0 {
for i := segCount - 1; i >= 0; i-- {
segment := section.GetSegment(i)
minPref := segment.GetMinPrefixLenForBlock()
if minPref > 0 {
if minPref != bitsPerSegment || i != segCount-1 {
section.prefixLength = getNetworkPrefixLen(bitsPerSegment, minPref, i)
}
return
}
}
section.prefixLength = cacheBitCount(0)
}
}
func (section *addressSectionInternal) initMultAndImplicitPrefLen(bitsPerSegment BitCount) {
segCount := section.GetSegmentCount()
if segCount != 0 {
isMultiple := false
isBlock := true
for i := segCount - 1; i >= 0; i-- {
segment := section.GetSegment(i)
if isBlock {
minPref := segment.GetMinPrefixLenForBlock()
if minPref > 0 {
if minPref != bitsPerSegment || i != segCount-1 {
section.prefixLength = getNetworkPrefixLen(bitsPerSegment, minPref, i)
}
isBlock = false
if isMultiple { // nothing left to do
return
}
}
}
if !isMultiple && segment.isMultiple() {
isMultiple = true
section.isMult = true
if !isBlock { // nothing left to do
return
}
}
}
if isBlock {
section.prefixLength = cacheBitCount(0)
}
}
}
func createDivisionsFromSegs(
segProvider func(index int) *IPAddressSegment,
segCount int,
bitsToSegmentShift uint,
bitsPerSegment BitCount,
bytesPerSegment int,
maxValuePerSegment SegInt,
zeroSeg, zeroSegZeroPrefix, zeroSegPrefixBlock *IPAddressSegment,
assignedPrefLen PrefixLen) (divs []*AddressDivision, newPref PrefixLen, isMultiple bool) {
divs = make([]*AddressDivision, segCount)
prefixedSegment := -1
if assignedPrefLen != nil {
p := assignedPrefLen.bitCount()
if p < 0 {
p = 0
assignedPrefLen = cacheBitCount(p)
} else {
boundaryBits := BitCount(segCount << bitsToSegmentShift)
if p > boundaryBits {
p = boundaryBits
assignedPrefLen = cacheBitCount(p)
}
}
prefixedSegment = getNetworkSegmentIndex(p, bytesPerSegment, bitsPerSegment)
}
var previousSegPrefixed bool
var lastSegment *IPAddressSegment
for i := 0; i < segCount; i++ {
segment := segProvider(i)
if segment == nil {
if previousSegPrefixed {
divs[i] = zeroSegZeroPrefix.ToDiv()
} else if i == prefixedSegment {
newPref = cachePrefixLen(assignedPrefLen)
segPref := getPrefixedSegmentPrefixLength(bitsPerSegment, assignedPrefLen.bitCount(), prefixedSegment)
if i+1 < segCount && isPrefixSubnet(
func(segmentIndex int) SegInt {
seg := segProvider(segmentIndex + i + 1)
if seg == nil {
return 0
}
return seg.GetSegmentValue()
},
func(segmentIndex int) SegInt {
seg := segProvider(segmentIndex + i + 1)
if seg == nil {
return 0
}
return seg.GetUpperSegmentValue()
},
segCount-(i+1), bytesPerSegment, bitsPerSegment, maxValuePerSegment, 0, zerosOnly) {
divs[i] = zeroSeg.toPrefixedNetworkDivision(segPref)
i++
isMultiple = isMultiple || i < len(divs) || segPref.bitCount() < bitsPerSegment
for ; i < len(divs); i++ {
divs[i] = zeroSegPrefixBlock.ToDiv()
}
break
} else {
divs[i] = zeroSeg.toPrefixedNetworkDivision(segPref)
}
} else {
divs[i] = zeroSeg.ToDiv() // nil segs are just zero
}
} else {
// The final prefix length is the minimum amongst the assigned one and all of the segments' own prefixes
segPrefix := segment.getDivisionPrefixLength()
segIsPrefixed := segPrefix != nil
if previousSegPrefixed {
if !segIsPrefixed || segPrefix.bitCount() != 0 {
divs[i] = createAddressDivision(
segment.derivePrefixed(cacheBitCount(0))) // change seg prefix to 0
} else {
divs[i] = segment.ToDiv() // seg prefix is already 0
}
} else {
// if a prefix length was supplied, we must check for prefix subnets
var segPrefixSwitch bool
var assignedSegPref PrefixLen
if i == prefixedSegment || (prefixedSegment > 0 && segIsPrefixed) {
// there exists an assigned prefix length
assignedSegPref = getPrefixedSegmentPrefixLength(bitsPerSegment, assignedPrefLen.bitCount(), i)
if segIsPrefixed {
if assignedSegPref == nil || segPrefix.bitCount() < assignedSegPref.bitCount() {
if segPrefix.bitCount() == 0 && i > 0 {
// normalize boundaries by looking back
if !lastSegment.IsPrefixed() {
divs[i-1] = createAddressDivision(
lastSegment.derivePrefixed(cacheBitCount(bitsPerSegment)))
}
}
newPref = getNetworkPrefixLen(bitsPerSegment, segPrefix.bitCount(), i)
} else {
newPref = cachePrefixLen(assignedPrefLen)
segPrefixSwitch = assignedSegPref.bitCount() < segPrefix.bitCount()
}
} else {
newPref = cachePrefixLen(assignedPrefLen)
segPrefixSwitch = true
}
if isPrefixSubnet(
func(segmentIndex int) SegInt {
seg := segProvider(segmentIndex)
if seg == nil {
return 0
}
return seg.GetSegmentValue()
},
func(segmentIndex int) SegInt {
seg := segProvider(segmentIndex)
if seg == nil {
return 0
}
return seg.GetUpperSegmentValue()
},
segCount,
bytesPerSegment,
bitsPerSegment,
maxValuePerSegment,
newPref.bitCount(),
zerosOnly) {
divs[i] = segment.toPrefixedNetworkDivision(assignedSegPref)
i++
isMultiple = isMultiple || i < len(divs) || newPref.bitCount() < bitsPerSegment
for ; i < len(divs); i++ {
divs[i] = zeroSegPrefixBlock.ToDiv()
}
break
}
previousSegPrefixed = true
} else if segIsPrefixed {
if segPrefix.bitCount() == 0 && i > 0 {
// normalize boundaries by looking back
if !lastSegment.IsPrefixed() {
divs[i-1] = createAddressDivision(lastSegment.derivePrefixed(cacheBitCount(bitsPerSegment)))
}
}
newPref = getNetworkPrefixLen(bitsPerSegment, segPrefix.bitCount(), i)
previousSegPrefixed = true
}
if segPrefixSwitch {
divs[i] = createAddressDivision(segment.derivePrefixed(assignedSegPref)) // change seg prefix
} else {
divs[i] = segment.ToDiv()
}
}
isMultiple = isMultiple || segment.isMultiple()
}
lastSegment = segment
}
return
}
func (section *addressSectionInternal) matchesTypeAndCount(other *AddressSection) (matches bool, count int) {
count = section.GetDivisionCount()
if count != other.GetDivisionCount() {
return
} else if section.getAddrType() != other.getAddrType() {
return
}
matches = true
return
}
func (section *addressSectionInternal) equal(otherT AddressSectionType) bool {
if otherT == nil {
return false
}
other := otherT.ToSectionBase()
if other == nil {
return false
}
matchesStructure, _ := section.matchesTypeAndCount(other)
return matchesStructure && section.sameCountTypeEquals(other)
}
func (section *addressSectionInternal) sameCountTypeEquals(other *AddressSection) bool {
count := section.GetSegmentCount()
for i := count - 1; i >= 0; i-- {
if !section.GetSegment(i).sameTypeEquals(other.GetSegment(i)) {
return false
}
}
return true
}
func (section *addressSectionInternal) sameCountTypeContains(other *AddressSection) bool {
count := section.GetSegmentCount()
for i := count - 1; i >= 0; i-- {
if !section.GetSegment(i).sameTypeContains(other.GetSegment(i)) {
return false
}
}
return true
}
// GetBitsPerSegment returns the number of bits comprising each segment in this section. Segments in the same address section are equal length.
func (section *addressSectionInternal) GetBitsPerSegment() BitCount {
addrType := section.getAddrType()
if addrType.isIPv4() {
return IPv4BitsPerSegment
} else if addrType.isIPv6() {
return IPv6BitsPerSegment
} else if addrType.isMAC() {
return MACBitsPerSegment
}
if section.GetDivisionCount() == 0 {
return 0
}
return section.getDivision(0).GetBitCount()
}
// GetBytesPerSegment returns the number of bytes comprising each segment in this section. Segments in the same address section are equal length.
func (section *addressSectionInternal) GetBytesPerSegment() int {
addrType := section.getAddrType()
if addrType.isIPv4() {
return IPv4BytesPerSegment
} else if addrType.isIPv6() {
return IPv6BytesPerSegment
} else if addrType.isMAC() {
return MACBytesPerSegment
}
if section.GetDivisionCount() == 0 {
return 0
}
return section.getDivision(0).GetByteCount()
}
// GetSegment returns the segment at the given index.
// The first segment is at index 0.
// GetSegment will panic given a negative index or an index matching or larger than the segment count.
func (section *addressSectionInternal) GetSegment(index int) *AddressSegment {
return section.getDivision(index).ToSegmentBase()
}
// GetGenericSegment returns the segment as an AddressSegmentType,
// allowing all segment types to be represented by a single type.
// The first segment is at index 0.
// GetGenericSegment will panic given a negative index or an index matching or larger than the segment count.
func (section *addressSectionInternal) GetGenericSegment(index int) AddressSegmentType {
return section.GetSegment(index)
}
// GetSegmentCount returns the segment count.
func (section *addressSectionInternal) GetSegmentCount() int {
return section.GetDivisionCount()
}
// ForEachSegment visits each segment in order from most-significant to least, the most significant with index 0, calling the given function for each, terminating early if the function returns true.
// Returns the number of visited segments.
func (section *addressSectionInternal) ForEachSegment(consumer func(segmentIndex int, segment *AddressSegment) (stop bool)) int {
divArray := section.getDivArray()
if divArray != nil {
for i, div := range divArray {
if consumer(i, div.ToSegmentBase()) {
return i + 1
}
}
}
return len(divArray)
}
// GetBitCount returns the number of bits in each value comprising this address item.
func (section *addressSectionInternal) GetBitCount() BitCount {
divLen := section.GetDivisionCount()
if divLen == 0 {
return 0
}
return getSegmentsBitCount(section.getDivision(0).GetBitCount(), section.GetSegmentCount())
}
// GetByteCount returns the number of bytes required for each value comprising this address item.
func (section *addressSectionInternal) GetByteCount() int {
return int((section.GetBitCount() + 7) >> 3)
}
// GetMaxSegmentValue returns the maximum possible segment value for this type of address.
//
// Note this is not the maximum of the range of segment values in this specific address,
// this is the maximum value of any segment for this address type and version, determined by the number of bits per segment.
func (section *addressSectionInternal) GetMaxSegmentValue() SegInt {
addrType := section.getAddrType()
if addrType.isIPv4() {
return IPv4MaxValuePerSegment
} else if addrType.isIPv6() {
return IPv6MaxValuePerSegment
} else if addrType.isMAC() {
return MACMaxValuePerSegment
}
divLen := section.GetDivisionCount()
if divLen == 0 {
return 0
}
return section.GetSegment(0).GetMaxValue()
}
// TestBit returns true if the bit in the lower value of this section at the given index is 1, where index 0 refers to the least significant bit.
// In other words, it computes (bits & (1 << n)) != 0), using the lower value of this section.
// TestBit will panic if n < 0, or if it matches or exceeds the bit count of this item.
func (section *addressSectionInternal) TestBit(n BitCount) bool {
return section.IsOneBit(section.GetBitCount() - (n + 1))
}
// IsOneBit returns true if the bit in the lower value of this section at the given index is 1, where index 0 refers to the most significant bit.
// IsOneBit will panic if bitIndex is less than zero, or if it is larger than the bit count of this item.
func (section *addressSectionInternal) IsOneBit(prefixBitIndex BitCount) bool {
bitsPerSegment := section.GetBitsPerSegment()
bytesPerSegment := section.GetBytesPerSegment()
segment := section.GetSegment(getHostSegmentIndex(prefixBitIndex, bytesPerSegment, bitsPerSegment))
segmentBitIndex := prefixBitIndex % bitsPerSegment
return segment.IsOneBit(segmentBitIndex)
}
// Gets the subsection from the series starting from the given index and ending just before the give endIndex.
// The first segment is at index 0.
func (section *addressSectionInternal) getSubSection(index, endIndex int) *AddressSection {
if index < 0 {
index = 0
}
thisSegmentCount := section.GetSegmentCount()
if endIndex > thisSegmentCount {
endIndex = thisSegmentCount
}
segmentCount := endIndex - index
if segmentCount <= 0 {
if thisSegmentCount == 0 {
return section.toAddressSection()
}
// we do not want an inconsistency where mac zero length can have prefix len zero while ip sections cannot
return zeroSection
}
if index == 0 && endIndex == thisSegmentCount {
return section.toAddressSection()
}
segs := section.getSubDivisions(index, endIndex)
newPrefLen := section.getPrefixLen()
if newPrefLen != nil {
newPrefLen = getAdjustedPrefixLength(section.GetBitsPerSegment(), newPrefLen.bitCount(), index, endIndex)
}
addrType := section.getAddrType()
if !section.isMultiple() {
return createSection(segs, newPrefLen, addrType)
}
return deriveAddressSectionPrefLen(section.toAddressSection(), segs, newPrefLen)
}
func (section *addressSectionInternal) getLowestHighestSections() (lower, upper *AddressSection) {
if !section.isMultiple() {
lower = section.toAddressSection()
upper = lower
return
}
cache := section.cache
if cache == nil {
return section.createLowestHighestSections()
}
cached := (*groupingCache)(atomicLoadPointer((*unsafe.Pointer)(unsafe.Pointer(&cache.sectionCache))))
if cached == nil {
cached = &groupingCache{}
cached.lower, cached.upper = section.createLowestHighestSections()
dataLoc := (*unsafe.Pointer)(unsafe.Pointer(&cache.sectionCache))
atomicStorePointer(dataLoc, unsafe.Pointer(cached))
}
lower = cached.lower
upper = cached.upper
return
}
func (section *addressSectionInternal) createLowestHighestSections() (lower, upper *AddressSection) {
segmentCount := section.GetSegmentCount()
lowSegs := createSegmentArray(segmentCount)
var highSegs []*AddressDivision
if section.isMultiple() {
highSegs = createSegmentArray(segmentCount)
}
for i := 0; i < segmentCount; i++ {
seg := section.GetSegment(i)
lowSegs[i] = seg.GetLower().ToDiv()
if highSegs != nil {
highSegs[i] = seg.GetUpper().ToDiv()
}
}
lower = deriveAddressSection(section.toAddressSection(), lowSegs)
if highSegs == nil {
upper = lower
} else {
upper = deriveAddressSection(section.toAddressSection(), highSegs)
}
return
}
// Returns the address created by converting this address to an address with a 0 as the first bit following the prefix, followed by all ones to the end, and with the prefix length then removed
// Returns the same address if it has no prefix length.
func (section *addressSectionInternal) toMaxLower() *AddressSection {
return section.toAboveOrBelow(false)
}
// Returns the address created by converting this address to an address with a 1 as the first bit following the prefix, followed by all zeros to the end, and with the prefix length then removed
// Returns the same address if it has no prefix length
func (section *addressSectionInternal) toMinUpper() *AddressSection {
return section.toAboveOrBelow(true)
}
func (section *addressSectionInternal) toAboveOrBelow(above bool) *AddressSection {
prefLen := section.GetPrefixLen()
if prefLen == nil {
return section.toAddressSection()
}
prefBits := prefLen.Len()
segmentCount := section.GetSegmentCount()
if prefBits == section.GetBitCount() || segmentCount == 0 {
return section.withoutPrefixLen()
}
segmentByteCount := section.GetBytesPerSegment()
segmentBitCount := section.GetBitsPerSegment()
newSegs := createSegmentArray(segmentCount)
if prefBits > 0 {
networkSegmentIndex := getNetworkSegmentIndex(prefBits, segmentByteCount, segmentBitCount)
section.copySubDivisions(0, networkSegmentIndex, newSegs)
}
hostSegmentIndex := getHostSegmentIndex(prefBits, segmentByteCount, segmentBitCount)
if hostSegmentIndex < segmentCount {
oldSeg := section.getDivision(hostSegmentIndex)
oldVal := oldSeg.getUpperSegmentValue()
segPrefBits := getPrefixedSegmentPrefixLength(segmentBitCount, prefBits, hostSegmentIndex).bitCount()
// 1 bit followed by zeros
allOnes := ^SegInt(0)
var newVal SegInt
if above {
hostBits := uint(segmentBitCount - segPrefBits)
networkMask := allOnes << (hostBits - 1)
hostMask := ^(allOnes << hostBits)
newVal = (oldVal | hostMask) & networkMask
} else {
hostBits := uint(segmentBitCount - segPrefBits)
networkMask := allOnes << hostBits
hostMask := ^(allOnes<<hostBits - 1)
newVal = (oldVal & networkMask) | hostMask
}
newSegs[hostSegmentIndex] = createAddressDivision(oldSeg.deriveNewSeg(newVal, nil))
if j := hostSegmentIndex + 1; j < segmentCount {
var endSeg *AddressDivision
if above {
endSeg = createAddressDivision(oldSeg.deriveNewSeg(0, nil))
} else {
maxSegVal := section.GetMaxSegmentValue()
endSeg = createAddressDivision(oldSeg.deriveNewSeg(maxSegVal, nil))
}
newSegs[j] = endSeg
for j++; j < segmentCount; j++ {
newSegs[j] = endSeg
}
}
}
return deriveAddressSectionPrefLen(section.toAddressSection(), newSegs, nil)
}
func (section *addressSectionInternal) reverseSegments(segProducer func(int) (*AddressSegment, addrerr.IncompatibleAddressError)) (res *AddressSection, err addrerr.IncompatibleAddressError) {
count := section.GetSegmentCount()
if count == 0 { // case count == 1 we cannot exit early, we need to apply segProducer to each segment
return section.withoutPrefixLen(), nil
}
newSegs := createSegmentArray(count)
halfCount := count >> 1
i := 0
isSame := !section.isPrefixed() //when reversing, the prefix must go
for j := count - 1; i < halfCount; i, j = i+1, j-1 {
var newj, newi *AddressSegment
if newj, err = segProducer(i); err != nil {
return
}
if newi, err = segProducer(j); err != nil {
return
}
origi := section.GetSegment(i)
origj := section.GetSegment(j)
newSegs[j] = newj.ToDiv()
newSegs[i] = newi.ToDiv()
if isSame &&
!(segValsSame(newi.getSegmentValue(), origi.getSegmentValue(), newi.getUpperSegmentValue(), origi.getUpperSegmentValue()) &&
segValsSame(newj.getSegmentValue(), origj.getSegmentValue(), newj.getUpperSegmentValue(), origj.getUpperSegmentValue())) {
isSame = false
}
}
if (count & 1) == 1 { //the count is odd, handle the middle one
seg := section.getDivision(i)
newSegs[i] = seg // gets segment i without prefix length
}
if isSame {
res = section.toAddressSection()
return
}
res = deriveAddressSectionPrefLen(section.toAddressSection(), newSegs, nil)
return
}
func (section *addressSectionInternal) reverseBits(perByte bool) (res *AddressSection, err addrerr.IncompatibleAddressError) {
if perByte {
isSame := !section.isPrefixed() //when reversing, the prefix must go
count := section.GetSegmentCount()
newSegs := createSegmentArray(count)
for i := 0; i < count; i++ {
seg := section.GetSegment(i)
var reversedSeg *AddressSegment
reversedSeg, err = seg.ReverseBits(perByte)
if err != nil {
return
}
newSegs[i] = reversedSeg.ToDiv()
if isSame && !segValsSame(seg.getSegmentValue(), reversedSeg.getSegmentValue(), seg.getUpperSegmentValue(), reversedSeg.getUpperSegmentValue()) {
isSame = false
}
}
if isSame {
res = section.toAddressSection() //We can do this because for ipv6 startIndex stays the same and for mac startIndex and extended stays the same
return
}
res = deriveAddressSectionPrefLen(section.toAddressSection(), newSegs, nil)
return
}
return section.reverseSegments(
func(i int) (*AddressSegment, addrerr.IncompatibleAddressError) {
return section.GetSegment(i).ReverseBits(perByte)
},
)
}
func (section *addressSectionInternal) reverseBytes(perSegment bool) (res *AddressSection, err addrerr.IncompatibleAddressError) {
if perSegment {
isSame := !section.isPrefixed() //when reversing, the prefix must go
count := section.GetSegmentCount()
newSegs := createSegmentArray(count)
for i := 0; i < count; i++ {
seg := section.GetSegment(i)
var reversedSeg *AddressSegment
reversedSeg, err = seg.ReverseBytes()
if err != nil {
return
}
newSegs[i] = reversedSeg.ToDiv()
if isSame && !segValsSame(seg.getSegmentValue(), reversedSeg.getSegmentValue(), seg.getUpperSegmentValue(), reversedSeg.getUpperSegmentValue()) {
isSame = false
}
}
if isSame {
res = section.toAddressSection() //We can do this because for ipv6 startIndex stays the same and for mac startIndex and extended stays the same
return
}
res = deriveAddressSectionPrefLen(section.toAddressSection(), newSegs, nil)
return
}
return section.reverseSegments(
func(i int) (*AddressSegment, addrerr.IncompatibleAddressError) {
return section.GetSegment(i).ReverseBytes()
},
)
}
// callers to replace have ensures the component sections have consistent prefix lengths for the replacement
func (section *addressSectionInternal) replace(
index,
endIndex int,
replacement *AddressSection,
replacementStartIndex,
replacementEndIndex int,
prefixLen PrefixLen) *AddressSection {
otherSegmentCount := replacementEndIndex - replacementStartIndex
segmentCount := section.GetSegmentCount()
totalSegmentCount := segmentCount + otherSegmentCount - (endIndex - index)
segs := createSegmentArray(totalSegmentCount)
sect := section.toAddressSection()
sect.copySubDivisions(0, index, segs)
if index < totalSegmentCount {
replacement.copySubDivisions(replacementStartIndex, replacementEndIndex, segs[index:])
if index+otherSegmentCount < totalSegmentCount {
sect.copySubDivisions(endIndex, segmentCount, segs[index+otherSegmentCount:])
}
}
addrType := sect.getAddrType()
if addrType.isZeroSegments() { // zero-length section
addrType = replacement.getAddrType()
}
return createInitializedSection(segs, prefixLen, addrType)
}
// Replaces segments starting from startIndex and ending before endIndex with the segments starting at replacementStartIndex and
// ending before replacementEndIndex from the replacement section.
func (section *addressSectionInternal) replaceLen(startIndex, endIndex int, replacement *AddressSection, replacementStartIndex, replacementEndIndex int, segmentToBitsShift uint) *AddressSection {
segmentCount := section.GetSegmentCount()
startIndex, endIndex, replacementStartIndex, replacementEndIndex =
adjustIndices(startIndex, endIndex, segmentCount, replacementStartIndex, replacementEndIndex, replacement.GetSegmentCount())
replacedCount := endIndex - startIndex
replacementCount := replacementEndIndex - replacementStartIndex
// unlike ipvx, sections of zero length with 0 prefix are still considered to be applying their prefix during replacement,
// because you can have zero length prefixes when there are no bits in the section
prefixLength := section.getPrefixLen()
if replacementCount == 0 && replacedCount == 0 {
if prefixLength != nil {
prefLen := prefixLength.bitCount()
if prefLen <= BitCount(startIndex<<segmentToBitsShift) {
return section.toAddressSection()
} else {
replacementPrefisLength := replacement.getPrefixLen()
if replacementPrefisLength == nil {
return section.toAddressSection()
} else if replacementPrefisLength.bitCount() > BitCount(replacementStartIndex<<segmentToBitsShift) {
return section.toAddressSection()
}
}
} else {
replacementPrefisLength := replacement.getPrefixLen()
if replacementPrefisLength == nil {
return section.toAddressSection()
} else if replacementPrefisLength.bitCount() > BitCount(replacementStartIndex<<segmentToBitsShift) {
return section.toAddressSection()
}
}
} else if segmentCount == replacedCount {
if prefixLength == nil || prefixLength.bitCount() > 0 {
return replacement
} else {
replacementPrefisLength := replacement.getPrefixLen()
if replacementPrefisLength != nil && replacementPrefisLength.bitCount() == 0 { // prefix length is 0
return replacement
}
}
}
startBits := BitCount(startIndex << segmentToBitsShift)
var newPrefixLength PrefixLen
if prefixLength != nil && prefixLength.bitCount() <= startBits {
newPrefixLength = prefixLength
} else {
replacementPrefLen := replacement.getPrefixLen()
if replacementPrefLen != nil && replacementPrefLen.bitCount() <= BitCount(replacementEndIndex<<segmentToBitsShift) {
var replacementPrefixLen BitCount
replacementStartBits := BitCount(replacementStartIndex << segmentToBitsShift)
if replacementPrefLen.bitCount() > replacementStartBits {
replacementPrefixLen = replacementPrefLen.bitCount() - replacementStartBits
}
newPrefixLength = cacheBitCount(startBits + replacementPrefixLen)
} else if prefixLength != nil {
replacementBits := BitCount(replacementCount << segmentToBitsShift)
var endPrefixBits BitCount
endIndexBits := BitCount(endIndex << segmentToBitsShift)
if prefixLength.bitCount() > endIndexBits {
endPrefixBits = prefixLength.bitCount() - endIndexBits
}
newPrefixLength = cacheBitCount(startBits + replacementBits + endPrefixBits)
} else {
newPrefixLength = nil
}
}
result := section.replace(startIndex, endIndex, replacement, replacementStartIndex, replacementEndIndex, newPrefixLength)
return result
}
func (section *addressSectionInternal) toPrefixBlock() *AddressSection {
prefixLength := section.getPrefixLen()
if prefixLength == nil {
return section.toAddressSection()
}
return section.toPrefixBlockLen(prefixLength.bitCount())
}
func (section *addressSectionInternal) toPrefixBlockLen(prefLen BitCount) *AddressSection {
prefLen = checkSubnet(section, prefLen)
segCount := section.GetSegmentCount()
if segCount == 0 {
return section.toAddressSection()
}
segmentByteCount := section.GetBytesPerSegment()
segmentBitCount := section.GetBitsPerSegment()
existingPrefixLength := section.getPrefixLen()
prefixMatches := existingPrefixLength != nil && existingPrefixLength.bitCount() == prefLen
if prefixMatches {
prefixedSegmentIndex := getHostSegmentIndex(prefLen, segmentByteCount, segmentBitCount)
if prefixedSegmentIndex >= segCount {
return section.toAddressSection()
}
segPrefLength := getPrefixedSegmentPrefixLength(segmentBitCount, prefLen, prefixedSegmentIndex).bitCount()
seg := section.GetSegment(prefixedSegmentIndex)
if seg.containsPrefixBlock(segPrefLength) {
i := prefixedSegmentIndex + 1
for ; i < segCount; i++ {
seg = section.GetSegment(i)
if !seg.IsFullRange() {
break
}
}
if i == segCount {
return section.toAddressSection()
}
}
}
prefixedSegmentIndex := 0
newSegs := createSegmentArray(segCount)
if prefLen > 0 {
prefixedSegmentIndex = getNetworkSegmentIndex(prefLen, segmentByteCount, segmentBitCount)
section.copySubDivisions(0, prefixedSegmentIndex, newSegs)
}
for i := prefixedSegmentIndex; i < segCount; i++ {
segPrefLength := getPrefixedSegmentPrefixLength(segmentBitCount, prefLen, i)
oldSeg := section.getDivision(i)
newSegs[i] = oldSeg.toPrefixedNetworkDivision(segPrefLength)
}
return createSectionMultiple(newSegs, cacheBitCount(prefLen), section.getAddrType(), section.isMultiple() || prefLen < section.GetBitCount())
}
func (section *addressSectionInternal) toBlock(segmentIndex int, lower, upper SegInt) *AddressSection {
segCount := section.GetSegmentCount()
i := segmentIndex
if i < 0 {
i = 0
}
maxSegVal := section.GetMaxSegmentValue()
for ; i < segCount; i++ {
seg := section.GetSegment(segmentIndex)
var lowerVal, upperVal SegInt
if i == segmentIndex {
lowerVal, upperVal = lower, upper
} else {
upperVal = maxSegVal
}
if !segsSame(nil, seg.getDivisionPrefixLength(), lowerVal, seg.GetSegmentValue(), upperVal, seg.GetUpperSegmentValue()) {
newSegs := createSegmentArray(segCount)
section.copySubDivisions(0, i, newSegs)
newSeg := createAddressDivision(seg.deriveNewMultiSeg(lowerVal, upperVal, nil))
newSegs[i] = newSeg
var allSeg *AddressDivision
if j := i + 1; j < segCount {
if i == segmentIndex {
allSeg = createAddressDivision(seg.deriveNewMultiSeg(0, maxSegVal, nil))
} else {
allSeg = newSeg
}
newSegs[j] = allSeg
for j++; j < segCount; j++ {
newSegs[j] = allSeg
}
}
return createSectionMultiple(newSegs, nil, section.getAddrType(),
segmentIndex < segCount-1 || lower != upper)
}
}
return section.toAddressSection()
}
func (section *addressSectionInternal) withoutPrefixLen() *AddressSection {
if !section.isPrefixed() {
return section.toAddressSection()
}
if sect := section.toIPAddressSection(); sect != nil {
return sect.withoutPrefixLen().ToSectionBase()
}
return createSectionMultiple(section.getDivisionsInternal(), nil, section.getAddrType(), section.isMultiple())
}
func (section *addressSectionInternal) getAdjustedPrefix(adjustment BitCount) BitCount {
prefix := section.getPrefixLen()
bitCount := section.GetBitCount()
var result BitCount
if prefix == nil {
if adjustment > 0 { // start from 0
if adjustment > bitCount {
result = bitCount
} else {
result = adjustment
}
} else { // start from end
if -adjustment < bitCount {
result = bitCount + adjustment
}
}
} else {
result = prefix.bitCount() + adjustment
if result > bitCount {
result = bitCount
} else if result < 0 {
result = 0
}
}
return result
}
func (section *addressSectionInternal) adjustPrefixLen(adjustment BitCount) *AddressSection {
// no zeroing
res, _ := section.adjustPrefixLength(adjustment, false)
return res
}
func (section *addressSectionInternal) adjustPrefixLenZeroed(adjustment BitCount) (*AddressSection, addrerr.IncompatibleAddressError) {
return section.adjustPrefixLength(adjustment, true)
}
func (section *addressSectionInternal) adjustPrefixLength(adjustment BitCount, withZeros bool) (*AddressSection, addrerr.IncompatibleAddressError) {
if adjustment == 0 && section.isPrefixed() {
return section.toAddressSection(), nil
}
prefix := section.getAdjustedPrefix(adjustment)
return section.setPrefixLength(prefix, withZeros)
}
func (section *addressSectionInternal) setPrefixLen(prefixLen BitCount) *AddressSection {
// no zeroing
res, _ := section.setPrefixLength(prefixLen, false)
return res
}
func (section *addressSectionInternal) setPrefixLenZeroed(prefixLen BitCount) (*AddressSection, addrerr.IncompatibleAddressError) {
return section.setPrefixLength(prefixLen, true)
}
func (section *addressSectionInternal) setPrefixLength(
networkPrefixLength BitCount,
withZeros bool,
) (res *AddressSection, err addrerr.IncompatibleAddressError) {
existingPrefixLength := section.getPrefixLen()
if existingPrefixLength != nil && networkPrefixLength == existingPrefixLength.bitCount() {
res = section.toAddressSection()
return
}
segmentCount := section.GetSegmentCount()
var appliedPrefixLen PrefixLen // purposely nil when there are no segments
verifyMask := false
var startIndex int
var segmentMaskProducer func(int) SegInt
if segmentCount != 0 {
maxVal := section.GetMaxSegmentValue()
appliedPrefixLen = cacheBitCount(networkPrefixLength)
var minPrefIndex, maxPrefIndex int
var minPrefLen, maxPrefLen BitCount
bitsPerSegment := section.GetBitsPerSegment()
bytesPerSegment := section.GetBytesPerSegment()
prefIndex := getNetworkSegmentIndex(networkPrefixLength, bytesPerSegment, bitsPerSegment)
if existingPrefixLength != nil {
verifyMask = true
existingPrefLen := existingPrefixLength.bitCount()
existingPrefIndex := getNetworkSegmentIndex(existingPrefLen, bytesPerSegment, bitsPerSegment) // can be -1 if existingPrefLen is 0
if prefIndex > existingPrefIndex {
maxPrefIndex = prefIndex
minPrefIndex = existingPrefIndex
} else {
maxPrefIndex = existingPrefIndex
minPrefIndex = prefIndex
}
if withZeros {
if networkPrefixLength < existingPrefLen {
minPrefLen = networkPrefixLength
maxPrefLen = existingPrefLen
} else {
minPrefLen = existingPrefLen
maxPrefLen = networkPrefixLength
}
startIndex = minPrefIndex
segmentMaskProducer = func(i int) SegInt {
if i >= minPrefIndex {
if i <= maxPrefIndex {
minSegPrefLen := getPrefixedSegmentPrefixLength(bitsPerSegment, minPrefLen, i).bitCount()
minMask := maxVal << uint(bitsPerSegment-minSegPrefLen)
maxSegPrefLen := getPrefixedSegmentPrefixLength(bitsPerSegment, maxPrefLen, i)
if maxSegPrefLen != nil {
maxMask := maxVal << uint(bitsPerSegment-maxSegPrefLen.bitCount())
return minMask | ^maxMask
}
return minMask
}
}
return maxVal
}
} else {
startIndex = minPrefIndex
}
} else {
startIndex = prefIndex
}
if segmentMaskProducer == nil {
segmentMaskProducer = func(i int) SegInt {
return maxVal
}
}
}
if startIndex < 0 {
startIndex = 0
}
return section.getSubnetSegments(
startIndex,
appliedPrefixLen,
verifyMask,
func(i int) *AddressDivision {
return section.getDivision(i)
},
segmentMaskProducer,
)
}
func (section *addressSectionInternal) assignPrefixForSingleBlock() *AddressSection {
newPrefix := section.GetPrefixLenForSingleBlock()
if newPrefix == nil {
return nil
}
newSect := section.setPrefixLen(newPrefix.bitCount())
cache := newSect.cache
if cache != nil {
// no atomic writes required since we created this new section in here
cache.isSinglePrefixBlock = &trueVal
cache.equivalentPrefix = cachePrefix(newPrefix.bitCount())
cache.minPrefix = newPrefix
}
return newSect
}
// Constructs an equivalent address section with the smallest CIDR prefix possible (largest network),
// such that the range of values are a set of subnet blocks for that prefix.
func (section *addressSectionInternal) assignMinPrefixForBlock() *AddressSection {
return section.setPrefixLen(section.GetMinPrefixLenForBlock())
}
// PrefixEqual determines if the given section matches this section up to the prefix length of this section.
// It returns whether the argument section has the same address section prefix values as this.
//
// All prefix bits of this section must be present in the other section to be comparable, otherwise false is returned.
func (section *addressSectionInternal) PrefixEqual(other AddressSectionType) (res bool) {
o := other.ToSectionBase()
if section.toAddressSection() == o {
return true
} else if section.getAddrType() != o.getAddrType() {
return
}
return section.prefixContains(o, false)
}
// PrefixContains returns whether the prefix values in the given address section
// are prefix values in this address section, using the prefix length of this section.
// If this address section has no prefix length, the entire address is compared.
//
// It returns whether the prefix of this address contains all values of the same prefix length in the given address.
//
// All prefix bits of this section must be present in the other section to be comparable.
func (section *addressSectionInternal) PrefixContains(other AddressSectionType) (res bool) {
o := other.ToSectionBase()
if section.toAddressSection() == o {
return true
} else if section.getAddrType() != o.getAddrType() {
return
}
return section.prefixContains(o, true)
}
func (section *addressSectionInternal) prefixContains(other *AddressSection, contains bool) (res bool) {
prefixLength := section.getPrefixLen()
var prefixedSection int
if prefixLength == nil {
prefixedSection = section.GetSegmentCount()
if prefixedSection > other.GetSegmentCount() {
return
}
} else {
prefLen := prefixLength.bitCount()
prefixedSection = getNetworkSegmentIndex(prefLen, section.GetBytesPerSegment(), section.GetBitsPerSegment())
if prefixedSection >= 0 {
if prefixedSection >= other.GetSegmentCount() {
return
}
one := section.GetSegment(prefixedSection)
two := other.GetSegment(prefixedSection)
segPrefixLength := getPrefixedSegmentPrefixLength(one.getBitCount(), prefLen, prefixedSection)
if contains {
if !one.PrefixContains(two, segPrefixLength.bitCount()) {
return
}
} else {
if !one.PrefixEqual(two, segPrefixLength.bitCount()) {
return
}
}
}
}
for prefixedSection--; prefixedSection >= 0; prefixedSection-- {
one := section.GetSegment(prefixedSection)
two := other.GetSegment(prefixedSection)
if contains {
if !one.Contains(two) {
return
}
} else {
if !one.equalsSegment(two) {
return
}
}
}
return true
}
func (section *addressSectionInternal) contains(other AddressSectionType) bool {
if other == nil {
return true
}
otherSection := other.ToSectionBase()
if section.toAddressSection() == otherSection || otherSection == nil {
return true
}
//check if they are comparable first
matches, count := section.matchesTypeAndCount(otherSection)
if !matches {
return false
} else {
for i := count - 1; i >= 0; i-- {
if !section.GetSegment(i).sameTypeContains(otherSection.GetSegment(i)) {
return false
}
}
}
return true
}
func (section *addressSectionInternal) getStringCache() *stringCache {
if section.hasNoDivisions() {
return &zeroStringCache
}
cache := section.cache
if cache == nil {
return nil
}
return &cache.stringCache
}
func (section *addressSectionInternal) getLower() *AddressSection {
lower, _ := section.getLowestHighestSections()
return lower
}
func (section *addressSectionInternal) getUpper() *AddressSection {
_, upper := section.getLowestHighestSections()
return upper
}
func (section *addressSectionInternal) incrementBoundary(increment int64) *AddressSection {
if increment <= 0 {
if increment == 0 {
return section.toAddressSection()
}
return section.getLower().increment(increment)
}
return section.getUpper().increment(increment)
}
func (section *addressSectionInternal) increment(increment int64) *AddressSection {
if sect := section.toIPv4AddressSection(); sect != nil {
return sect.Increment(increment).ToSectionBase()
} else if sect := section.toIPv6AddressSection(); sect != nil {
return sect.Increment(increment).ToSectionBase()
} else if sect := section.toMACAddressSection(); sect != nil {
return sect.Increment(increment).ToSectionBase()
}
return nil
}
var (
otherOctalPrefix = "0o"
otherHexPrefix = "0X"
//decimalParams = new(StringOptionsBuilder).SetRadix(10).SetExpandedSegments(true).ToOptions()
hexParams = new(addrstr.StringOptionsBuilder).SetRadix(16).SetHasSeparator(false).SetExpandedSegments(true).ToOptions()
hexUppercaseParams = new(addrstr.StringOptionsBuilder).SetRadix(16).SetHasSeparator(false).SetExpandedSegments(true).SetUppercase(true).ToOptions()
hexPrefixedParams = new(addrstr.StringOptionsBuilder).SetRadix(16).SetHasSeparator(false).SetExpandedSegments(true).SetAddressLabel(HexPrefix).ToOptions()
hexPrefixedUppercaseParams = new(addrstr.StringOptionsBuilder).SetRadix(16).SetHasSeparator(false).SetExpandedSegments(true).SetAddressLabel(HexPrefix).SetUppercase(true).ToOptions()
octalParams = new(addrstr.StringOptionsBuilder).SetRadix(8).SetHasSeparator(false).SetExpandedSegments(true).ToOptions()
octalPrefixedParams = new(addrstr.StringOptionsBuilder).SetRadix(8).SetHasSeparator(false).SetExpandedSegments(true).SetAddressLabel(OctalPrefix).ToOptions()
octal0oPrefixedParams = new(addrstr.StringOptionsBuilder).SetRadix(8).SetHasSeparator(false).SetExpandedSegments(true).SetAddressLabel(otherOctalPrefix).ToOptions()
binaryParams = new(addrstr.StringOptionsBuilder).SetRadix(2).SetHasSeparator(false).SetExpandedSegments(true).ToOptions()
binaryPrefixedParams = new(addrstr.StringOptionsBuilder).SetRadix(2).SetHasSeparator(false).SetExpandedSegments(true).SetAddressLabel(BinaryPrefix).ToOptions()
decimalParams = new(addrstr.StringOptionsBuilder).SetRadix(10).SetHasSeparator(false).SetExpandedSegments(true).ToOptions()
)
// Format is intentionally the only method with non-pointer receivers. It is not intended to be called directly, it is intended for use by the fmt package.
// When called by a function in the fmt package, nil values are detected before this method is called, avoiding a panic when calling this method.
// Format implements [fmt.Formatter] interface. It accepts the formats
// - 'v' for the default address and section format (either the normalized or canonical string),
// - 's' (string) for the same,
// - 'b' (binary), 'o' (octal with 0 prefix), 'O' (octal with 0o prefix),
// - 'd' (decimal), 'x' (lowercase hexadecimal), and
// - 'X' (uppercase hexadecimal).
// Also supported are some of fmt's format flags for integral types.
// Sign control is not supported since addresses and sections are never negative.
// '#' for an alternate format is supported, which adds a leading zero for octal, and for hexadecimal it adds
// a leading "0x" or "0X" for "%#x" and "%#X" respectively.
// Also supported is specification of minimum digits precision, output field width,
// space or zero padding, and '-' for left or right justification.
func (section addressSectionInternal) Format(state fmt.State, verb rune) {
section.format(state, verb, NoZone, false)
}
func (section *addressSectionInternal) format(state fmt.State, verb rune, zone Zone, useCanonical bool) {
var str string
var err error
var isStringFormat bool
_, hasPrecision := state.Precision()
_, hasWidth := state.Width()
useDefaultStr := !hasPrecision && !hasWidth
switch verb {
case 's', 'v', 'q':
isStringFormat = true
if useCanonical {
if zone != NoZone {
str = section.toAddressSection().ToIPv6().toCanonicalString(zone)
} else {
str = section.toCanonicalString()
}
} else {
if zone != NoZone {
str = section.toAddressSection().ToIPv6().toNormalizedString(zone)
} else {
str = section.toNormalizedString()
}
}
if verb == 'q' && useDefaultStr {
if state.Flag('#') && (zone == NoZone || strconv.CanBackquote(string(zone))) {
str = "`" + str + "`"
} else if zone == NoZone {
str = `"` + str + `"`
} else {
str = strconv.Quote(str) // zones should not have special characters, but you cannot be sure
}
}
case 'x':
useDefaultStr = useDefaultStr && zone == NoZone
str, err = section.toHexString(useDefaultStr && state.Flag('#'))
case 'X':
useDefaultStr = useDefaultStr && zone == NoZone
if useDefaultStr && state.Flag('#') {
str, err = section.toLongStringZoned(NoZone, hexPrefixedUppercaseParams)
} else {
str, err = section.toLongStringZoned(NoZone, hexUppercaseParams)
}
case 'b':
useDefaultStr = useDefaultStr && zone == NoZone
str, err = section.toBinaryString(useDefaultStr && state.Flag('#'))
case 'o':
useDefaultStr = useDefaultStr && zone == NoZone
str, err = section.toOctalString(useDefaultStr && state.Flag('#'))
case 'O':
useDefaultStr = useDefaultStr && zone == NoZone
if useDefaultStr {
str, err = section.toLongOctalStringZoned(NoZone, octal0oPrefixedParams)
} else {
str, err = section.toLongOctalStringZoned(NoZone, octalParams)
}
case 'd':
useDefaultStr = useDefaultStr && zone == NoZone
str, err = section.toDecimalStringZoned(NoZone)
default:
// format not supported
_, _ = fmt.Fprintf(state, "%%!%c(address=%s)", verb, section.toString())
return
}
if err != nil { // could not produce an octal, binary, hex or decimal string, so use string format instead
isStringFormat = true
if useCanonical {
str = section.toCanonicalString()
} else {
str = section.toNormalizedString()
}
}
if useDefaultStr {
_, _ = state.Write([]byte(str))
} else if isStringFormat {
section.writeStrFmt(state, verb, str, zone)
} else {
section.writeNumberFmt(state, verb, str, zone)
}
}
func (section addressSectionInternal) writeStrFmt(state fmt.State, verb rune, str string, zone Zone) {
if precision, hasPrecision := state.Precision(); hasPrecision && len(str) > precision {
str = str[:precision]
}
if verb == 'q' {
if state.Flag('#') && (zone == NoZone || strconv.CanBackquote(string(zone))) {
str = "`" + str + "`"
} else if zone == NoZone {
str = `"` + str + `"`
} else {
str = strconv.Quote(str) // zones should not have special characters, but you cannot be sure
}
}
var leftPaddingCount, rightPaddingCount int
if width, hasWidth := state.Width(); hasWidth && len(str) < width { // padding required
paddingCount := width - len(str)
if state.Flag('-') {
// right padding with spaces (takes precedence over '0' flag)
rightPaddingCount = paddingCount
} else {
// left padding with spaces
leftPaddingCount = paddingCount
}
}
// left padding/str/right padding
writeBytes(state, ' ', leftPaddingCount)
_, _ = state.Write([]byte(str))
writeBytes(state, ' ', rightPaddingCount)
}
func (section addressSectionInternal) writeNumberFmt(state fmt.State, verb rune, str string, zone Zone) {
var prefix string
if verb == 'O' {
prefix = otherOctalPrefix // "0o"
} else if state.Flag('#') {
switch verb {
case 'x':
prefix = HexPrefix
case 'X':
prefix = otherHexPrefix
case 'b':
prefix = BinaryPrefix
case 'o':
prefix = OctalPrefix
}
}
isMulti := section.isMultiple()
var addrStr, secondStr string
var separator byte
if isMulti {
separatorIndex := len(str) >> 1
addrStr = str[:separatorIndex]
separator = str[separatorIndex]
secondStr = str[separatorIndex+1:]
} else {
addrStr = str
}
precision, hasPrecision := state.Precision()
width, hasWidth := state.Width()
usePrecision := hasPrecision
if section.hasNoDivisions() {
usePrecision = false
prefix = ""
}
for {
var zeroCount, leftPaddingCount, rightPaddingCount int
if usePrecision {
if len(addrStr) > precision {
frontChar := addrStr[0]
if frontChar == '0' {
i := 1
// eliminate leading zeros to match the precision (all the way to nothing)
for len(addrStr) > precision+i {
frontChar = addrStr[i]
if frontChar != '0' {
break
}
i++
}
addrStr = addrStr[i:]
}
} else if len(addrStr) < precision {
// expand to match the precision
zeroCount = precision - len(addrStr)
}
}
length := len(prefix) + zeroCount + len(addrStr)
zoneRequired := len(zone) > 0
if zoneRequired {
length += len(zone) + 1
}
if hasWidth && length < width { // padding required
paddingCount := width - length
if state.Flag('-') {
// right padding with spaces (takes precedence over '0' flag)
rightPaddingCount = paddingCount
} else if state.Flag('0') && !hasPrecision {
// left padding with zeros
zeroCount = paddingCount
} else {
// left padding with spaces
leftPaddingCount = paddingCount
}
}
// left padding/prefix/zeros/str/right padding
writeBytes(state, ' ', leftPaddingCount)
writeStr(state, prefix, 1)
writeBytes(state, '0', zeroCount)
_, _ = state.Write([]byte(addrStr))
if zoneRequired {
_, _ = state.Write([]byte{IPv6ZoneSeparator})
_, _ = state.Write([]byte(zone))
}
writeBytes(state, ' ', rightPaddingCount)
if !isMulti {
break
}
addrStr = secondStr
isMulti = false
_, _ = state.Write([]byte{separator})
}
}
func writeStr(state fmt.State, str string, count int) {
if count > 0 && len(str) > 0 {
bytes := []byte(str)
for ; count > 0; count-- {
_, _ = state.Write(bytes)
}
}
}
func writeBytes(state fmt.State, b byte, count int) {
if count > 0 {
bytes := make([]byte, count)
for i := range bytes {
bytes[i] = b
}
_, _ = state.Write(bytes)
}
}
func (section *addressSectionInternal) toCanonicalString() string {
if sect := section.toIPv4AddressSection(); sect != nil {
return sect.ToCanonicalString()
} else if sect := section.toIPv6AddressSection(); sect != nil {
return sect.ToCanonicalString()
} else if sect := section.toMACAddressSection(); sect != nil {
return sect.ToCanonicalString()
}
// zero section
return nilSection()
}
func (section *addressSectionInternal) toNormalizedString() string {
if sect := section.toIPv4AddressSection(); sect != nil {
return sect.ToNormalizedString()
} else if sect := section.toIPv6AddressSection(); sect != nil {
return sect.ToNormalizedString()
} else if sect := section.toMACAddressSection(); sect != nil {
return sect.ToNormalizedString()
}
return nilSection()
}
func (section *addressSectionInternal) toNormalizedWildcardString() string {
if sect := section.toIPv4AddressSection(); sect != nil {
return sect.ToNormalizedWildcardString()
} else if sect := section.toIPv6AddressSection(); sect != nil {
return sect.ToNormalizedWildcardString()
} else if sect := section.toMACAddressSection(); sect != nil {
return sect.ToNormalizedWildcardString()
}
return nilSection()
}
func (section *addressSectionInternal) toCompressedString() string {
if sect := section.toIPv4AddressSection(); sect != nil {
return sect.ToCompressedString()
} else if sect := section.toIPv6AddressSection(); sect != nil {
return sect.ToCompressedString()
} else if sect := section.toMACAddressSection(); sect != nil {
return sect.ToCompressedString()
}
return nilSection()
}
func (section *addressSectionInternal) toDecimalStringZoned(zone Zone) (string, addrerr.IncompatibleAddressError) {
if isDual, err := section.isDualString(); err != nil {
return "", err
} else {
var largeGrouping *IPAddressLargeDivisionGrouping
if section.hasNoDivisions() {
largeGrouping = NewIPAddressLargeDivGrouping(nil)
} else {
bytes := section.getBytes()
prefLen := section.getPrefixLen()
bitCount := section.GetBitCount()
var div *IPAddressLargeDivision
if isDual {
div = NewIPAddressLargeRangePrefixDivision(bytes, section.getUpperBytes(), prefLen, bitCount, 10)
} else {
div = NewIPAddressLargePrefixDivision(bytes, prefLen, bitCount, 10)
}
largeGrouping = NewIPAddressLargeDivGrouping([]*IPAddressLargeDivision{div})
}
return toNormalizedZonedString(decimalParams, largeGrouping, zone), nil
}
}
func (section *addressSectionInternal) toHexString(with0xPrefix bool) (string, addrerr.IncompatibleAddressError) {
cache := section.getStringCache()
if cache == nil {
return section.toHexStringZoned(with0xPrefix, NoZone)
}
var cacheField **string
if with0xPrefix {
cacheField = &cache.hexStringPrefixed
} else {
cacheField = &cache.hexString
}
return cacheStrErr(cacheField,
func() (string, addrerr.IncompatibleAddressError) {
return section.toHexStringZoned(with0xPrefix, NoZone)
})
}
func (section *addressSectionInternal) toHexStringZoned(with0xPrefix bool, zone Zone) (string, addrerr.IncompatibleAddressError) {
if with0xPrefix {
return section.toLongStringZoned(zone, hexPrefixedParams)
}
return section.toLongStringZoned(zone, hexParams)
}
func (section *addressSectionInternal) toOctalString(with0Prefix bool) (string, addrerr.IncompatibleAddressError) {
cache := section.getStringCache()
if cache == nil {
return section.toOctalStringZoned(with0Prefix, NoZone)
}
var cacheField **string
if with0Prefix {
cacheField = &cache.octalStringPrefixed
} else {
cacheField = &cache.octalString
}
return cacheStrErr(cacheField,
func() (string, addrerr.IncompatibleAddressError) {
return section.toOctalStringZoned(with0Prefix, NoZone)
})
}
func (section *addressSectionInternal) toOctalStringZoned(with0Prefix bool, zone Zone) (string, addrerr.IncompatibleAddressError) {
var opts addrstr.StringOptions
if with0Prefix {
opts = octalPrefixedParams
} else {
opts = octalParams
}
return section.toLongOctalStringZoned(zone, opts)
}
func (section *addressSectionInternal) toLongOctalStringZoned(zone Zone, opts addrstr.StringOptions) (string, addrerr.IncompatibleAddressError) {
if isDual, err := section.isDualString(); err != nil {
return "", err
} else if isDual {
lowerDivs, _ := section.getLower().createNewDivisions(3)
upperDivs, _ := section.getUpper().createNewDivisions(3)
lowerPart := createInitializedGrouping(lowerDivs, nil)
upperPart := createInitializedGrouping(upperDivs, nil)
return toNormalizedStringRange(toParams(opts), lowerPart, upperPart, zone), nil
}
divs, _ := section.createNewDivisions(3)
part := createInitializedGrouping(divs, nil)
return toParams(opts).toZonedString(part, zone), nil
}
func (section *addressSectionInternal) toBinaryString(with0bPrefix bool) (string, addrerr.IncompatibleAddressError) {
cache := section.getStringCache()
if cache == nil {
return section.toBinaryStringZoned(with0bPrefix, NoZone)
}
var cacheField **string
if with0bPrefix {
cacheField = &cache.binaryStringPrefixed
} else {
cacheField = &cache.binaryString
}
return cacheStrErr(cacheField,
func() (string, addrerr.IncompatibleAddressError) {
return section.toBinaryStringZoned(with0bPrefix, NoZone)
})
}
func (section *addressSectionInternal) toBinaryStringZoned(with0bPrefix bool, zone Zone) (string, addrerr.IncompatibleAddressError) {
if with0bPrefix {
return section.toLongStringZoned(zone, binaryPrefixedParams)
}
return section.toLongStringZoned(zone, binaryParams)
}
func (section *addressSectionInternal) toLongStringZoned(zone Zone, params addrstr.StringOptions) (string, addrerr.IncompatibleAddressError) {
if isDual, err := section.isDualString(); err != nil {
return "", err
} else if isDual {
sect := section.toAddressSection()
return toNormalizedStringRange(toParams(params), sect.GetLower(), sect.GetUpper(), zone), nil
}
return section.toCustomStringZoned(params, zone), nil
}
func (section *addressSectionInternal) toCustomString(stringOptions addrstr.StringOptions) string {
return toNormalizedString(stringOptions, section.toAddressSection())
}
func (section *addressSectionInternal) toCustomStringZoned(stringOptions addrstr.StringOptions, zone Zone) string {
return toNormalizedZonedString(stringOptions, section.toAddressSection(), zone)
}
func (section *addressSectionInternal) isDualString() (bool, addrerr.IncompatibleAddressError) {
count := section.GetSegmentCount()
if section.isMultiple() {
//at this point we know we will return true, but we determine now if we must return addrerr.IncompatibleAddressError
for i := 0; i < count; i++ {
division := section.GetSegment(i)
if division.isMultiple() {
isLastFull := true
for j := count - 1; j >= i; j-- {
division = section.GetSegment(j)
if division.isMultiple() {
if !isLastFull {
return false, &incompatibleAddressError{addressError{key: "ipaddress.error.segmentMismatch"}}
}
isLastFull = division.IsFullRange()
} else {
isLastFull = false
}
}
return true, nil
}
}
}
return false, nil
}
// used by iterator() and nonZeroHostIterator() in section types
func (section *addressSectionInternal) sectionIterator(excludeFunc func([]*AddressDivision) bool) Iterator[*AddressSection] {
useOriginal := !section.isMultiple()
var original = section.toAddressSection()
var iterator Iterator[[]*AddressDivision]
if useOriginal {
if excludeFunc != nil && excludeFunc(section.getDivisionsInternal()) {
original = nil // the single-valued iterator starts out empty
}
} else {
iterator = allSegmentsIterator(
section.GetSegmentCount(),
nil,
func(index int) Iterator[*AddressSegment] { return section.GetSegment(index).iterator() },
excludeFunc)
}
return sectIterator(
useOriginal,
original,
false,
iterator)
}
func (section *addressSectionInternal) prefixIterator(isBlockIterator bool) Iterator[*AddressSection] {
prefLen := section.prefixLength
if prefLen == nil {
return section.sectionIterator(nil)
}
prefLength := prefLen.bitCount()
var useOriginal bool
if isBlockIterator {
useOriginal = section.IsSinglePrefixBlock()
} else {
useOriginal = section.GetPrefixCount().CmpAbs(bigOneConst()) == 0
}
bitsPerSeg := section.GetBitsPerSegment()
bytesPerSeg := section.GetBytesPerSegment()
networkSegIndex := getNetworkSegmentIndex(prefLength, bytesPerSeg, bitsPerSeg)
hostSegIndex := getHostSegmentIndex(prefLength, bytesPerSeg, bitsPerSeg)
segCount := section.GetSegmentCount()
var iterator Iterator[[]*AddressDivision]
if !useOriginal {
var hostSegIteratorProducer func(index int) Iterator[*AddressSegment]
if isBlockIterator {
hostSegIteratorProducer = func(index int) Iterator[*AddressSegment] {
return section.GetSegment(index).prefixBlockIterator()
}
} else {
hostSegIteratorProducer = func(index int) Iterator[*AddressSegment] {
return section.GetSegment(index).prefixIterator()
}
}
iterator = segmentsIterator(
segCount,
nil, //when no prefix we defer to other iterator, when there is one we use the whole original section in the encompassing iterator and not just the original segments
func(index int) Iterator[*AddressSegment] { return section.GetSegment(index).iterator() },
nil,
networkSegIndex,
hostSegIndex,
hostSegIteratorProducer)
}
if isBlockIterator {
return sectIterator(
useOriginal,
section.toAddressSection(),
prefLength < section.GetBitCount(),
iterator)
}
return prefixSectIterator(
useOriginal,
section.toAddressSection(),
iterator)
}
func (section *addressSectionInternal) blockIterator(segmentCount int) Iterator[*AddressSection] {
if segmentCount < 0 {
segmentCount = 0
}
allSegsCount := section.GetSegmentCount()
if segmentCount >= allSegsCount {
return section.sectionIterator(nil)
}
useOriginal := !section.isMultipleTo(segmentCount)
var iterator Iterator[[]*AddressDivision]
if !useOriginal {
var hostSegIteratorProducer func(index int) Iterator[*AddressSegment]
hostSegIteratorProducer = func(index int) Iterator[*AddressSegment] {
return section.GetSegment(index).identityIterator()
}
segIteratorProducer := func(index int) Iterator[*AddressSegment] {
return section.GetSegment(index).iterator()
}
iterator = segmentsIterator(
allSegsCount,
nil, //when no prefix we defer to other iterator, when there is one we use the whole original section in the encompassing iterator and not just the original segments
segIteratorProducer,
nil,
segmentCount-1,
segmentCount,
hostSegIteratorProducer)
}
return sectIterator(
useOriginal,
section.toAddressSection(),
section.isMultipleFrom(segmentCount),
iterator)
}
func (section *addressSectionInternal) sequentialBlockIterator() Iterator[*AddressSection] {
return section.blockIterator(section.GetSequentialBlockIndex())
}
// GetSequentialBlockCount provides the count of elements from the sequential block iterator, the minimal number of sequential address sections that comprise this address section.
func (section *addressSectionInternal) GetSequentialBlockCount() *big.Int {
sequentialSegCount := section.GetSequentialBlockIndex()
return section.GetPrefixCountLen(BitCount(sequentialSegCount) * section.GetBitsPerSegment())
}
func (section *addressSectionInternal) isMultipleTo(segmentCount int) bool {
for i := 0; i < segmentCount; i++ {
if section.GetSegment(i).isMultiple() {
return true
}
}
return false
}
func (section *addressSectionInternal) isMultipleFrom(segmentCount int) bool {
segTotal := section.GetSegmentCount()
for i := segmentCount; i < segTotal; i++ {
if section.GetSegment(i).isMultiple() {
return true
}
}
return false
}
func (section *addressSectionInternal) getSubnetSegments( // called by methods to adjust/remove/set prefix length, masking methods, zero host and zero network methods
startIndex int,
networkPrefixLength PrefixLen,
verifyMask bool,
segProducer func(int) *AddressDivision,
segmentMaskProducer func(int) SegInt,
) (res *AddressSection, err addrerr.IncompatibleAddressError) {
networkPrefixLength = checkPrefLen(networkPrefixLength, section.GetBitCount())
bitsPerSegment := section.GetBitsPerSegment()
count := section.GetSegmentCount()
for i := startIndex; i < count; i++ {
segmentPrefixLength := getSegmentPrefixLength(bitsPerSegment, networkPrefixLength, i)
seg := segProducer(i)
//note that the mask can represent a range (for example a CIDR mask),
//but we use the lowest value (maskSegment.value) in the range when masking (ie we discard the range)
maskValue := segmentMaskProducer(i)
origValue, origUpperValue := seg.getSegmentValue(), seg.getUpperSegmentValue()
value, upperValue := origValue, origUpperValue
if verifyMask {
mask64 := uint64(maskValue)
val64 := uint64(value)
upperVal64 := uint64(upperValue)
masker := MaskRange(val64, upperVal64, mask64, seg.GetMaxValue())
if !masker.IsSequential() {
err = &incompatibleAddressError{addressError{key: "ipaddress.error.maskMismatch"}}
return
}
value = SegInt(masker.GetMaskedLower(val64, mask64))
upperValue = SegInt(masker.GetMaskedUpper(upperVal64, mask64))
} else {
value &= maskValue
upperValue &= maskValue
}
if !segsSame(segmentPrefixLength, seg.getDivisionPrefixLength(), value, origValue, upperValue, origUpperValue) {
newSegments := createSegmentArray(count)
section.copySubDivisions(0, i, newSegments)
newSegments[i] = createAddressDivision(seg.deriveNewMultiSeg(value, upperValue, segmentPrefixLength))
for i++; i < count; i++ {
segmentPrefixLength = getSegmentPrefixLength(bitsPerSegment, networkPrefixLength, i)
seg = segProducer(i)
maskValue = segmentMaskProducer(i)
origValue, origUpperValue = seg.getSegmentValue(), seg.getUpperSegmentValue()
value, upperValue = origValue, origUpperValue
if verifyMask {
mask64 := uint64(maskValue)
val64 := uint64(value)
upperVal64 := uint64(upperValue)
masker := MaskRange(val64, upperVal64, mask64, seg.GetMaxValue())
if !masker.IsSequential() {
err = &incompatibleAddressError{addressError{key: "ipaddress.error.maskMismatch"}}
return
}
value = SegInt(masker.GetMaskedLower(val64, mask64))
upperValue = SegInt(masker.GetMaskedUpper(upperVal64, mask64))
} else {
value &= maskValue
upperValue &= maskValue
}
if !segsSame(segmentPrefixLength, seg.getDivisionPrefixLength(), value, origValue, upperValue, origUpperValue) {
newSegments[i] = createAddressDivision(seg.deriveNewMultiSeg(value, upperValue, segmentPrefixLength))
} else {
newSegments[i] = seg
}
}
res = deriveAddressSectionPrefLen(section.toAddressSection(), newSegments, networkPrefixLength)
return
}
}
res = section.toAddressSection()
return
}
func (section *addressSectionInternal) toAddressSection() *AddressSection {
return (*AddressSection)(unsafe.Pointer(section))
}
func (section *addressSectionInternal) toIPAddressSection() *IPAddressSection {
return section.toAddressSection().ToIP()
}
func (section *addressSectionInternal) toIPv4AddressSection() *IPv4AddressSection {
return section.toAddressSection().ToIPv4()
}
func (section *addressSectionInternal) toIPv6AddressSection() *IPv6AddressSection {
return section.toAddressSection().ToIPv6()
}
func (section *addressSectionInternal) toMACAddressSection() *MACAddressSection {
return section.toAddressSection().ToMAC()
}
//// only needed for godoc / pkgsite
// IsZero returns whether this section matches exactly the value of zero.
func (section *addressSectionInternal) IsZero() bool {
return section.addressDivisionGroupingInternal.IsZero()
}
// IncludesZero returns whether this section includes the value of zero within its range.
func (section *addressSectionInternal) IncludesZero() bool {
return section.addressDivisionGroupingInternal.IncludesZero()
}
// IsMax returns whether this section matches exactly the maximum possible value, the value whose bits are all ones.
func (section *addressSectionInternal) IsMax() bool {
return section.addressDivisionGroupingInternal.IsMax()
}
// IncludesMax returns whether this section includes the max value, the value whose bits are all ones, within its range.
func (section *addressSectionInternal) IncludesMax() bool {
return section.addressDivisionGroupingInternal.IncludesMax()
}
// IsFullRange returns whether this address item represents all possible values attainable by an address item of this type.
//
// This is true if and only if both IncludesZero and IncludesMax return true.
func (section *addressSectionInternal) IsFullRange() bool {
return section.addressDivisionGroupingInternal.IsFullRange()
}
// GetSequentialBlockIndex gets the minimal segment index for which all following segments are full-range blocks.
//
// The segment at this index is not a full-range block itself, unless all segments are full-range.
// The segment at this index and all following segments form a sequential range.
// For the full address section to be sequential, the preceding segments must be single-valued.
func (section *addressSectionInternal) GetSequentialBlockIndex() int {
return section.addressDivisionGroupingInternal.GetSequentialBlockIndex()
}
// GetPrefixLen returns the prefix length, or nil if there is no prefix length.
//
// A prefix length indicates the number of bits in the initial part of the address item that comprises the prefix.
//
// A prefix is a part of the address item that is not specific to that address but common amongst a group of such items, such as a CIDR prefix block subnet.
func (section *addressSectionInternal) GetPrefixLen() PrefixLen {
return section.addressDivisionGroupingInternal.GetPrefixLen()
}
// ContainsPrefixBlock returns whether the values of this item contains the block of values for the given prefix length.
//
// Unlike ContainsSinglePrefixBlock, whether there are multiple prefix values in this item for the given prefix length makes no difference.
//
// Use GetMinPrefixLenForBlock to determine the smallest prefix length for which this method returns true.
func (section *addressSectionInternal) ContainsPrefixBlock(prefixLen BitCount) bool {
prefixLen = checkSubnet(section, prefixLen)
divCount := section.GetSegmentCount()
bitsPerSegment := section.GetBitsPerSegment()
i := getHostSegmentIndex(prefixLen, section.GetBytesPerSegment(), bitsPerSegment)
if i < divCount {
div := section.GetSegment(i)
segmentPrefixLength := getPrefixedSegmentPrefixLength(bitsPerSegment, prefixLen, i)
if !div.ContainsPrefixBlock(segmentPrefixLength.bitCount()) {
return false
}
for i++; i < divCount; i++ {
div = section.GetSegment(i)
if !div.IsFullRange() {
return false
}
}
}
return true
}
// ContainsSinglePrefixBlock returns whether the values of this grouping contains a single prefix block for the given prefix length.
//
// This means there is only one prefix of the given length in this item, and this item contains the prefix block for that given prefix.
//
// Use GetPrefixLenForSingleBlock to determine whether there is a prefix length for which this method returns true.
func (section *addressSectionInternal) ContainsSinglePrefixBlock(prefixLen BitCount) bool {
return section.addressDivisionGroupingInternal.ContainsSinglePrefixBlock(prefixLen)
}
// IsPrefixBlock returns whether this address segment series has a prefix length and includes the block associated with its prefix length.
// If the prefix length matches the bit count, this returns true.
//
// This is different from ContainsPrefixBlock in that this method returns
// false if the series has no prefix length or a prefix length that differs from a prefix length for which ContainsPrefixBlock returns true.
func (section *addressSectionInternal) IsPrefixBlock() bool {
prefLen := section.getPrefixLen()
return prefLen != nil && section.ContainsPrefixBlock(prefLen.bitCount())
}
// IsSinglePrefixBlock returns whether the range matches the block of values for a single prefix identified by the prefix length of this address.
// This is similar to IsPrefixBlock except that it returns false when the subnet has multiple prefixes.
//
// What distinguishes this method from ContainsSinglePrefixBlock is that this method returns
// false if the series does not have a prefix length assigned to it,
// or a prefix length that differs from a prefix length for which ContainsSinglePrefixBlock returns true.
//
// It is similar to IsPrefixBlock but returns false when there are multiple prefixes.
func (section *addressSectionInternal) IsSinglePrefixBlock() bool {
return section.addressDivisionGroupingInternal.IsSinglePrefixBlock()
}
// GetMinPrefixLenForBlock returns the smallest prefix length such that this section includes the block of all values for that prefix length.
//
// If the entire range can be described this way, then this method returns the same value as GetPrefixLenForSingleBlock.
//
// There may be a single prefix, or multiple possible prefix values in this item for the returned prefix length.
// Use GetPrefixLenForSingleBlock to avoid the case of multiple prefix values.
//
// If this section represents a single value, this returns the bit count.
func (section *addressSectionInternal) GetMinPrefixLenForBlock() BitCount {
return section.addressDivisionGroupingInternal.GetMinPrefixLenForBlock()
}
// GetPrefixLenForSingleBlock returns a prefix length for which the range of this address section matches the block of addresses for that prefix.
//
// If no such prefix exists, GetPrefixLenForSingleBlock returns nil.
//
// If this address section represents a single value, returns the bit length.
func (section *addressSectionInternal) GetPrefixLenForSingleBlock() PrefixLen {
return section.addressDivisionGroupingInternal.GetPrefixLenForSingleBlock()
}
// GetValue returns the lowest individual address section in this address section as an integer value.
func (section *addressSectionInternal) GetValue() *big.Int {
return section.addressDivisionGroupingInternal.GetValue()
}
// GetUpperValue returns the highest individual address section in this address section as an integer value.
func (section *addressSectionInternal) GetUpperValue() *big.Int {
return section.addressDivisionGroupingInternal.GetUpperValue()
}
// Bytes returns the lowest individual address section in this address section as a byte slice.
func (section *addressSectionInternal) Bytes() []byte {
return section.addressDivisionGroupingInternal.Bytes()
}
// UpperBytes returns the highest individual address section in this address section as a byte slice.
func (section *addressSectionInternal) UpperBytes() []byte {
return section.addressDivisionGroupingInternal.UpperBytes()
}
// CopyBytes copies the value of the lowest individual address section in the section into a byte slice.
//
// If the value can fit in the given slice, the value is copied into that slice and a length-adjusted sub-slice is returned.
// Otherwise, a new slice is created and returned with the value.
func (section *addressSectionInternal) CopyBytes(bytes []byte) []byte {
return section.addressDivisionGroupingInternal.CopyBytes(bytes)
}
// CopyUpperBytes copies the value of the highest individual address section in the section into a byte slice.
//
// If the value can fit in the given slice, the value is copied into that slice and a length-adjusted sub-slice is returned.
// Otherwise, a new slice is created and returned with the value.
func (section *addressSectionInternal) CopyUpperBytes(bytes []byte) []byte {
return section.addressDivisionGroupingInternal.CopyUpperBytes(bytes)
}
// IsSequential returns whether the section represents a range of values that are sequential.
//
// Generally, this means that any segment covering a range of values must be followed by segment that are full range, covering all values.
func (section *addressSectionInternal) IsSequential() bool {
return section.addressDivisionGroupingInternal.IsSequential()
}
// GetLeadingBitCount returns the number of consecutive leading one or zero bits.
// If ones is true, returns the number of consecutive leading one bits.
// Otherwise, returns the number of consecutive leading zero bits.
//
// This method applies to the lower value of the range if this section represents multiple values.
func (section *addressSectionInternal) GetLeadingBitCount(ones bool) BitCount {
count := section.GetSegmentCount()
if count == 0 {
return 0
}
var front SegInt
if ones {
front = section.GetSegment(0).GetMaxValue()
}
var prefixLen BitCount
for i := 0; i < count; i++ {
seg := section.GetSegment(i)
value := seg.getSegmentValue()
if value != front {
return prefixLen + seg.GetLeadingBitCount(ones)
}
prefixLen += seg.getBitCount()
}
return prefixLen
}
// GetTrailingBitCount returns the number of consecutive trailing one or zero bits.
// If ones is true, returns the number of consecutive trailing zero bits.
// Otherwise, returns the number of consecutive trailing one bits.
//
// This method applies to the lower value of the range if this section represents multiple values.
func (section *addressSectionInternal) GetTrailingBitCount(ones bool) BitCount {
count := section.GetSegmentCount()
if count == 0 {
return 0
}
var back SegInt
if ones {
back = section.GetSegment(0).GetMaxValue()
}
var bitLen BitCount
for i := count - 1; i >= 0; i-- {
seg := section.GetSegment(i)
value := seg.getSegmentValue()
if value != back {
return bitLen + seg.GetTrailingBitCount(ones)
}
bitLen += seg.getBitCount()
}
return bitLen
}
//// end needed for godoc / pkgsite
// An AddressSection is section of an address, containing a certain number of consecutive segments.
//
// It is a series of individual address segments. Each segment has equal bit-length. Each address is backed by an address section that contains all the segments of the address.
//
// AddressSection instances are immutable. This also makes them concurrency-safe.
//
// Most operations that can be performed on Address instances can also be performed on AddressSection instances and vice-versa.
type AddressSection struct {
addressSectionInternal
}
// Contains returns whether this is same type and version as the given address section and whether it contains all values in the given section.
//
// Sections must also have the same number of segments to be comparable, otherwise false is returned.
func (section *AddressSection) Contains(other AddressSectionType) bool {
if section == nil {
return other == nil || other.ToSectionBase() == nil
}
return section.contains(other)
}
// Equal returns whether the given address section is equal to this address section.
// Two address sections are equal if they represent the same set of sections.
// They must match:
// - type/version (IPv4, IPv6, MAC, etc)
// - segment counts
// - bits per segment
// - segment value ranges
// Prefix lengths are ignored.
func (section *AddressSection) Equal(other AddressSectionType) bool {
if section == nil {
return other == nil || other.ToSectionBase() == nil
}
return section.equal(other)
}
// Compare returns a negative integer, zero, or a positive integer if this address section is less than, equal, or greater than the given item.
// Any address item is comparable to any other. All address items use CountComparator to compare.
func (section *AddressSection) Compare(item AddressItem) int {
return CountComparator.Compare(section, item)
}
// CompareSize compares the counts of two address sections, the number of individual sections represented.
//
// Rather than calculating counts with GetCount, there can be more efficient ways of determining whether one section represents more individual address sections than another.
//
// CompareSize returns a positive integer if this address section has a larger count than the one given, zero if they are the same, or a negative integer if the other has a larger count.
func (section *AddressSection) CompareSize(other AddressItem) int {
if section == nil {
if isNilItem(other) {
return 0
}
// we have size 0, other has size >= 1
return -1
}
return section.compareSize(other)
}
// GetCount returns the count of possible distinct values for this item.
// If not representing multiple values, the count is 1,
// unless this is a division grouping with no divisions, or an address section with no segments, in which case it is 0.
//
// Use IsMultiple if you simply want to know if the count is greater than 1.
func (section *AddressSection) GetCount() *big.Int {
if section == nil {
return bigZero()
} else if sect := section.ToIPv4(); sect != nil {
return sect.GetCount()
} else if sect := section.ToIPv6(); sect != nil {
return sect.GetCount()
} else if sect := section.ToMAC(); sect != nil {
return sect.GetCount()
}
return section.addressDivisionGroupingBase.getCount()
}
// IsMultiple returns whether this section represents multiple values.
func (section *AddressSection) IsMultiple() bool {
return section != nil && section.isMultiple()
}
// GetPrefixCount returns the number of distinct prefix values in this item.
//
// The prefix length is given by GetPrefixLen.
//
// If this has a non-nil prefix length, returns the number of distinct prefix values.
//
// If this has a nil prefix length, returns the same value as GetCount.
func (section *AddressSection) GetPrefixCount() *big.Int {
if sect := section.ToIPv4(); sect != nil {
return sect.GetPrefixCount()
} else if sect := section.ToIPv6(); sect != nil {
return sect.GetPrefixCount()
} else if sect := section.ToMAC(); sect != nil {
return sect.GetPrefixCount()
}
return section.addressDivisionGroupingBase.GetPrefixCount()
}
// GetPrefixCountLen returns the number of distinct prefix values in this item for the given prefix length.
func (section *AddressSection) GetPrefixCountLen(prefixLen BitCount) *big.Int {
if sect := section.ToIPv4(); sect != nil {
return sect.GetPrefixCountLen(prefixLen)
} else if sect := section.ToIPv6(); sect != nil {
return sect.GetPrefixCountLen(prefixLen)
} else if sect := section.ToMAC(); sect != nil {
return sect.GetPrefixCountLen(prefixLen)
}
return section.addressDivisionGroupingBase.GetPrefixCountLen(prefixLen)
}
// GetBlockCount returns the count of distinct values in the given number of initial (more significant) segments.
func (section *AddressSection) GetBlockCount(segments int) *big.Int {
if sect := section.ToIPv4(); sect != nil {
return sect.GetBlockCount(segments)
} else if sect := section.ToIPv6(); sect != nil {
return sect.GetBlockCount(segments)
} else if sect := section.ToMAC(); sect != nil {
return sect.GetBlockCount(segments)
}
return section.addressDivisionGroupingBase.GetBlockCount(segments)
}
// GetTrailingSection gets the subsection from the series starting from the given index.
// The first segment is at index 0.
func (section *AddressSection) GetTrailingSection(index int) *AddressSection {
return section.getSubSection(index, section.GetSegmentCount())
}
// GetSubSection gets the subsection from the series starting from the given index and ending just before the give endIndex.
// The first segment is at index 0.
func (section *AddressSection) GetSubSection(index, endIndex int) *AddressSection {
return section.getSubSection(index, endIndex)
}
// CopySubSegments copies the existing segments from the given start index until but not including the segment at the given end index,
// into the given slice, as much as can be fit into the slice, returning the number of segments copied.
func (section *AddressSection) CopySubSegments(start, end int, segs []*AddressSegment) (count int) {
start, end, targetStart := adjust1To1StartIndices(start, end, section.GetDivisionCount(), len(segs))
segs = segs[targetStart:]
return section.forEachSubDivision(start, end, func(index int, div *AddressDivision) {
segs[index] = div.ToSegmentBase()
}, len(segs))
}
// CopySegments copies the existing segments into the given slice,
// as much as can be fit into the slice, returning the number of segments copied.
func (section *AddressSection) CopySegments(segs []*AddressSegment) (count int) {
return section.ForEachSegment(func(index int, seg *AddressSegment) (stop bool) {
if stop = index >= len(segs); !stop {
segs[index] = seg
}
return
})
}
// GetSegments returns a slice with the address segments. The returned slice is not backed by the same array as this section.
func (section *AddressSection) GetSegments() (res []*AddressSegment) {
res = make([]*AddressSegment, section.GetSegmentCount())
section.CopySegments(res)
return
}
// GetLower returns the section in the range with the lowest numeric value,
// which will be the same section if it represents a single value.
// For example, for "1.2-3.4.5-6", the section "1.2.4.5" is returned.
func (section *AddressSection) GetLower() *AddressSection {
return section.getLower()
}
// GetUpper returns the section in the range with the highest numeric value,
// which will be the same section if it represents a single value.
// For example, for "1.2-3.4.5-6", the section "1.3.4.6" is returned.
func (section *AddressSection) GetUpper() *AddressSection {
return section.getUpper()
}
// IsPrefixed returns whether this section has an associated prefix length.
func (section *AddressSection) IsPrefixed() bool {
return section != nil && section.isPrefixed()
}
// ToPrefixBlock returns the section with the same prefix as this section while the remaining bits span all values.
// The returned section will be the block of all sections with the same prefix.
//
// If this section has no prefix, this section is returned.
func (section *AddressSection) ToPrefixBlock() *AddressSection {
return section.toPrefixBlock()
}
// ToPrefixBlockLen returns the section with the same prefix of the given length as this section while the remaining bits span all values.
// The returned section will be the block of all sections with the same prefix.
func (section *AddressSection) ToPrefixBlockLen(prefLen BitCount) *AddressSection {
return section.toPrefixBlockLen(prefLen)
}
// WithoutPrefixLen provides the same address section but with no prefix length. The values remain unchanged.
func (section *AddressSection) WithoutPrefixLen() *AddressSection {
if !section.IsPrefixed() {
return section
}
return section.withoutPrefixLen()
}
// SetPrefixLen sets the prefix length.
//
// A prefix length will not be set to a value lower than zero or beyond the bit length of the address section.
// The provided prefix length will be adjusted to these boundaries if necessary.
func (section *AddressSection) SetPrefixLen(prefixLen BitCount) *AddressSection {
return section.setPrefixLen(prefixLen)
}
// SetPrefixLenZeroed sets the prefix length.
//
// A prefix length will not be set to a value lower than zero or beyond the bit length of the address section.
// The provided prefix length will be adjusted to these boundaries if necessary.
//
// If this address section has a prefix length, and the prefix length is increased when setting the new prefix length, the bits moved within the prefix become zero.
// If this address section has a prefix length, and the prefix length is decreased when setting the new prefix length, the bits moved outside the prefix become zero.
//
// In other words, bits that move from one side of the prefix length to the other (bits moved into the prefix or outside the prefix) are zeroed.
//
// If the result cannot be zeroed because zeroing out bits results in a non-contiguous segment, an error is returned.
func (section *AddressSection) SetPrefixLenZeroed(prefixLen BitCount) (*AddressSection, addrerr.IncompatibleAddressError) {
return section.setPrefixLenZeroed(prefixLen)
}
// AdjustPrefixLen increases or decreases the prefix length by the given increment.
//
// A prefix length will not be adjusted lower than zero or beyond the bit length of the address section.
//
// If this address section has no prefix length, then the prefix length will be set to the adjustment if positive,
// or it will be set to the adjustment added to the bit count if negative.
func (section *AddressSection) AdjustPrefixLen(prefixLen BitCount) *AddressSection {
return section.adjustPrefixLen(prefixLen).ToSectionBase()
}
// AdjustPrefixLenZeroed increases or decreases the prefix length by the given increment while zeroing out the bits that have moved into or outside the prefix.
//
// A prefix length will not be adjusted lower than zero or beyond the bit length of the address section.
//
// If this address section has no prefix length, then the prefix length will be set to the adjustment if positive,
// or it will be set to the adjustment added to the bit count if negative.
//
// When prefix length is increased, the bits moved within the prefix become zero.
// When a prefix length is decreased, the bits moved outside the prefix become zero.
//
// If the result cannot be zeroed because zeroing out bits results in a non-contiguous segment, an error is returned.
func (section *AddressSection) AdjustPrefixLenZeroed(prefixLen BitCount) (*AddressSection, addrerr.IncompatibleAddressError) {
res, err := section.adjustPrefixLenZeroed(prefixLen)
return res.ToSectionBase(), err
}
// AssignPrefixForSingleBlock returns the equivalent prefix block that matches exactly the range of values in this address section.
// The returned block will have an assigned prefix length indicating the prefix length for the block.
//
// There may be no such address section - it is required that the range of values match the range of a prefix block.
// If there is no such address section, then nil is returned.
func (section *AddressSection) AssignPrefixForSingleBlock() *AddressSection {
return section.assignPrefixForSingleBlock()
}
// AssignMinPrefixForBlock returns an equivalent address section, assigned the smallest prefix length possible,
// such that the prefix block for that prefix length is in this address section.
//
// In other words, this method assigns a prefix length to this address section matching the largest prefix block in this address section.
func (section *AddressSection) AssignMinPrefixForBlock() *AddressSection {
return section.assignMinPrefixForBlock()
}
// ToBlock creates a new block of address sections by changing the segment at the given index to have the given lower and upper value,
// and changing the following segments to be full-range.
func (section *AddressSection) ToBlock(segmentIndex int, lower, upper SegInt) *AddressSection {
return section.toBlock(segmentIndex, lower, upper)
}
// IsAdaptiveZero returns true if the division grouping was originally created as an implicitly zero-valued section or grouping (e.g. IPv4AddressSection{}),
// meaning it was not constructed using a constructor function.
// Such a grouping, which has no divisions or segments, is convertible to an implicitly zero-valued grouping of any type or version, whether IPv6, IPv4, MAC, or other.
// In other words, when a section or grouping is the zero-value, then it is equivalent and convertible to the zero value of any other section or grouping type.
func (section *AddressSection) IsAdaptiveZero() bool {
return section != nil && section.matchesZeroGrouping()
}
// IsIP returns true if this address section originated as an IPv4 or IPv6 section, or a zero-length IP section. If so, use ToIP to convert back to the IP-specific type.
func (section *AddressSection) IsIP() bool {
return section != nil && section.matchesIPSectionType()
}
// IsIPv4 returns true if this address section originated as an IPv4 section. If so, use ToIPv4 to convert back to the IPv4-specific type.
func (section *AddressSection) IsIPv4() bool {
return section != nil && section.matchesIPv4SectionType()
}
// IsIPv6 returns true if this address section originated as an IPv6 section. If so, use ToIPv6 to convert back to the IPv6-specific type.
func (section *AddressSection) IsIPv6() bool {
return section != nil && section.matchesIPv6SectionType()
}
// IsMAC returns true if this address section originated as a MAC section. If so, use ToMAC to convert back to the MAC-specific type.
func (section *AddressSection) IsMAC() bool {
return section != nil && section.matchesMACSectionType()
}
// ToDivGrouping converts to an AddressDivisionGrouping, a polymorphic type usable with all address sections and division groupings.
// Afterwards, you can convert back with ToSectionBase.
//
// ToDivGrouping can be called with a nil receiver, enabling you to chain this method with methods that might return a nil pointer.
func (section *AddressSection) ToDivGrouping() *AddressDivisionGrouping {
return (*AddressDivisionGrouping)(unsafe.Pointer(section))
}
// ToIP converts to an IPAddressSection if this address section originated as an IPv4 or IPv6 section, or an implicitly zero-valued IP section.
// If not, ToIP returns nil.
//
// ToIP can be called with a nil receiver, enabling you to chain this method with methods that might return a nil pointer.
func (section *AddressSection) ToIP() *IPAddressSection {
if section.IsIP() {
return (*IPAddressSection)(unsafe.Pointer(section))
}
return nil
}
// ToIPv6 converts to an IPv6AddressSection if this section originated as an IPv6 section.
// If not, ToIPv6 returns nil.
//
// ToIPv6 can be called with a nil receiver, enabling you to chain this method with methods that might return a nil pointer.
func (section *AddressSection) ToIPv6() *IPv6AddressSection {
if section.IsIPv6() {
return (*IPv6AddressSection)(unsafe.Pointer(section))
}
return nil
}
// ToIPv4 converts to an IPv4AddressSection if this section originated as an IPv4 section.
// If not, ToIPv4 returns nil.
//
// ToIPv4 can be called with a nil receiver, enabling you to chain this method with methods that might return a nil pointer.
func (section *AddressSection) ToIPv4() *IPv4AddressSection {
if section.IsIPv4() {
return (*IPv4AddressSection)(unsafe.Pointer(section))
}
return nil
}
// ToMAC converts to a MACAddressSection if this section originated as a MAC section.
// If not, ToMAC returns nil.
//
// ToMAC can be called with a nil receiver, enabling you to chain this method with methods that might return a nil pointer.
func (section *AddressSection) ToMAC() *MACAddressSection {
if section.IsMAC() {
return (*MACAddressSection)(section)
}
return nil
}
// ToSectionBase is an identity method.
//
// ToSectionBase can be called with a nil receiver, enabling you to chain this method with methods that might return a nil pointer.
func (section *AddressSection) ToSectionBase() *AddressSection {
return section
}
// Wrap wraps this address section, returning a WrappedAddressSection, an implementation of ExtendedSegmentSeries,
// which can be used to write code that works with both addresses and address sections.
func (section *AddressSection) Wrap() WrappedAddressSection {
return wrapSection(section)
}
// Iterator provides an iterator to iterate through the individual address sections of this address section.
//
// When iterating, the prefix length is preserved. Remove it using WithoutPrefixLen prior to iterating if you wish to drop it from all individual address sections.
//
// Call IsMultiple to determine if this instance represents multiple address sections, or GetCount for the count.
func (section *AddressSection) Iterator() Iterator[*AddressSection] {
if section == nil {
return nilSectIterator()
}
return section.sectionIterator(nil)
}
// PrefixIterator provides an iterator to iterate through the individual prefixes of this address section,
// each iterated element spanning the range of values for its prefix.
//
// It is similar to the prefix block iterator, except for possibly the first and last iterated elements, which might not be prefix blocks,
// instead constraining themselves to values from this address section.
//
// If the series has no prefix length, then this is equivalent to Iterator.
func (section *AddressSection) PrefixIterator() Iterator[*AddressSection] {
return section.prefixIterator(false)
}
// PrefixBlockIterator provides an iterator to iterate through the individual prefix blocks, one for each prefix of this address section.
// Each iterated address section will be a prefix block with the same prefix length as this address section.
//
// If this address section has no prefix length, then this is equivalent to Iterator.
func (section *AddressSection) PrefixBlockIterator() Iterator[*AddressSection] {
return section.prefixIterator(true)
}
// IncrementBoundary returns the item that is the given increment from the range boundaries of this item.
//
// If the given increment is positive, adds the value to the highest (GetUpper) in the range to produce a new item.
// If the given increment is negative, adds the value to the lowest (GetLower) in the range to produce a new item.
// If the increment is zero, returns this.
//
// If this represents just a single value, this item is simply incremented by the given increment value, positive or negative.
//
// On overflow or underflow, IncrementBoundary returns nil.
func (section *AddressSection) IncrementBoundary(increment int64) *AddressSection {
return section.incrementBoundary(increment)
}
// Increment returns the item that is the given increment upwards into the range,
// with the increment of 0 returning the first in the range.
//
// If the increment i matches or exceeds the range count c, then i - c + 1
// is added to the upper item of the range.
// An increment matching the count gives you the item just above the highest in the range.
//
// If the increment is negative, it is added to the lowest of the range.
// To get the item just below the lowest of the range, use the increment -1.
//
// If this represents just a single value, the item is simply incremented by the given increment, positive or negative.
//
// If this item represents multiple values, a positive increment i is equivalent i + 1 values from the iterator and beyond.
// For instance, a increment of 0 is the first value from the iterator, an increment of 1 is the second value from the iterator, and so on.
// An increment of a negative value added to the count is equivalent to the same number of iterator values preceding the last value of the iterator.
// For instance, an increment of count - 1 is the last value from the iterator, an increment of count - 2 is the second last value, and so on.
//
// On overflow or underflow, Increment returns nil.
func (section *AddressSection) Increment(increment int64) *AddressSection {
return section.increment(increment)
}
// ReverseBits returns a new section with the bits reversed. Any prefix length is dropped.
//
// If the bits within a single segment cannot be reversed because the segment represents a range,
// and reversing the segment values results in a range that is not contiguous, this returns an error.
//
// In practice this means that to be reversible, a range must include all values except possibly the largest and/or smallest, which reverse to themselves.
//
// If perByte is true, the bits are reversed within each byte, otherwise all the bits are reversed.
func (section *AddressSection) ReverseBits(perByte bool) (*AddressSection, addrerr.IncompatibleAddressError) {
return section.reverseBits(perByte)
}
// ReverseBytes returns a new section with the bytes reversed. Any prefix length is dropped.
//
// If each segment is more than 1 byte long, and the bytes within a single segment cannot be reversed because the segment represents a range,
// and reversing the segment values results in a range that is not contiguous, then this returns an error.
//
// In practice this means that to be reversible, a range must include all values except possibly the largest and/or smallest, which reverse to themselves.
func (section *AddressSection) ReverseBytes() (*AddressSection, addrerr.IncompatibleAddressError) {
return section.reverseBytes(false)
}
// ReverseSegments returns a new section with the segments reversed.
func (section *AddressSection) ReverseSegments() *AddressSection {
if section.GetSegmentCount() <= 1 {
if section.IsPrefixed() {
return section.WithoutPrefixLen()
}
return section
}
res, _ := section.reverseSegments(
func(i int) (*AddressSegment, addrerr.IncompatibleAddressError) {
return section.GetSegment(i).withoutPrefixLen(), nil
},
)
return res
}
// String implements the [fmt.Stringer] interface, returning the normalized string provided by ToNormalizedString, or "<nil>" if the receiver is a nil pointer.
func (section *AddressSection) String() string {
if section == nil {
return nilString()
}
return section.toString()
}
// ToCanonicalString produces a canonical string for the address section.
//
// For IPv4, dotted octet format, also known as dotted decimal format, is used.
// https://datatracker.ietf.org/doc/html/draft-main-ipaddr-text-rep-00#section-2.1
//
// For IPv6, RFC 5952 describes canonical string representation.
// https://en.wikipedia.org/wiki/IPv6_address#Representation
// http://tools.ietf.org/html/rfc5952
//
// For MAC, it uses the canonical standardized IEEE 802 MAC address representation of xx-xx-xx-xx-xx-xx. An example is "01-23-45-67-89-ab".
// For range segments, '|' is used: "11-22-33|44-55-66".
func (section *AddressSection) ToCanonicalString() string {
if section == nil {
return nilString()
}
return section.toCanonicalString()
}
// ToNormalizedString produces a normalized string for the address section.
//
// For IPv4, it is the same as the canonical string.
//
// For IPv6, it differs from the canonical string. Zero-segments are not compressed.
//
// For MAC, it differs from the canonical string. It uses the most common representation of MAC addresses: "xx:xx:xx:xx:xx:xx". An example is "01:23:45:67:89:ab".
// For range segments, '-' is used: "11:22:33-44:55:66".
func (section *AddressSection) ToNormalizedString() string {
if section == nil {
return nilString()
}
return section.toNormalizedString()
}
// ToNormalizedWildcardString produces a string similar to the normalized string but for IP address sections it avoids the CIDR prefix length.
// Multiple-valued segments will be shown with wildcards and ranges (denoted by '*' and '-') instead of using the CIDR prefix notation.
func (section *AddressSection) ToNormalizedWildcardString() string {
if section == nil {
return nilString()
}
return section.toNormalizedWildcardString()
}
// ToCompressedString produces a short representation of this address section while remaining within the confines of standard representation(s) of the address.
//
// For IPv4, it is the same as the canonical string.
//
// For IPv6, it differs from the canonical string. It compresses the maximum number of zeros and/or host segments with the IPv6 compression notation '::'.
//
// For MAC, it differs from the canonical string. It produces a shorter string for the address that has no leading zeros.
func (section *AddressSection) ToCompressedString() string {
if section == nil {
return nilString()
}
return section.toCompressedString()
}
// ToHexString writes this address section as a single hexadecimal value (possibly two values if a range that is not a prefixed block),
// the number of digits according to the bit count, with or without a preceding "0x" prefix.
//
// If a multiple-valued section cannot be written as a single prefix block or a range of two values, an error is returned.
func (section *AddressSection) ToHexString(with0xPrefix bool) (string, addrerr.IncompatibleAddressError) {
if section == nil {
return nilString(), nil
}
return section.toHexString(with0xPrefix)
}
// ToOctalString writes this address section as a single octal value (possibly two values if a range),
// the number of digits according to the bit count, with or without a preceding "0" prefix.
//
// If a multiple-valued section cannot be written as a single prefix block or a range of two values, an error is returned.
func (section *AddressSection) ToOctalString(with0Prefix bool) (string, addrerr.IncompatibleAddressError) {
if section == nil {
return nilString(), nil
}
return section.toOctalString(with0Prefix)
}
// ToBinaryString writes this address section as a single binary value (possibly two values if a range that is not a prefixed block),
// the number of digits according to the bit count, with or without a preceding "0b" prefix.
//
// If a multiple-valued section cannot be written as a single prefix block or a range of two values, an error is returned.
func (section *AddressSection) ToBinaryString(with0bPrefix bool) (string, addrerr.IncompatibleAddressError) {
if section == nil {
return nilString(), nil
}
return section.toBinaryString(with0bPrefix)
}
// ToCustomString creates a customized string from this address section according to the given string option parameters.
func (section *AddressSection) ToCustomString(stringOptions addrstr.StringOptions) string {
if section == nil {
return nilString()
}
return section.toCustomString(stringOptions)
}
// GetSegmentStrings returns a slice with the string for each segment being the string that is normalized with wildcards.
func (section *AddressSection) GetSegmentStrings() []string {
if section == nil {
return nil
}
return section.getSegmentStrings()
}
func seriesValsSame(one, two AddressSegmentSeries) bool {
if one == two {
return true
}
count := one.GetDivisionCount()
if count != two.GetDivisionCount() {
panic(two)
}
for i := count - 1; i >= 0; i-- { // reverse order since less significant segments more likely to differ
oneSeg := one.GetGenericSegment(i)
twoSeg := two.GetGenericSegment(i)
if !segValsSame(oneSeg.GetSegmentValue(), twoSeg.GetSegmentValue(),
oneSeg.GetUpperSegmentValue(), twoSeg.GetUpperSegmentValue()) {
return false
}
}
return true
}
func toSegments(
bytes []byte,
segmentCount int,
bytesPerSegment int,
bitsPerSegment BitCount,
creator addressSegmentCreator,
assignedPrefixLength PrefixLen) (segments []*AddressDivision, err addrerr.AddressValueError) {
segments = createSegmentArray(segmentCount)
byteIndex, segmentIndex := len(bytes), segmentCount-1
for ; segmentIndex >= 0; segmentIndex-- {
var value SegInt
k := byteIndex - bytesPerSegment
if k < 0 {
k = 0
}
for j := k; j < byteIndex; j++ {
byteValue := bytes[j]
value <<= 8
value |= SegInt(byteValue)
}
byteIndex = k
segmentPrefixLength := getSegmentPrefixLength(bitsPerSegment, assignedPrefixLength, segmentIndex)
seg := creator.createSegment(value, value, segmentPrefixLength)
segments[segmentIndex] = seg
}
// any remaining bytes should be zero
for byteIndex--; byteIndex >= 0; byteIndex-- {
if bytes[byteIndex] != 0 {
err = &addressValueError{
addressError: addressError{key: "ipaddress.error.exceeds.size"},
val: int(bytes[byteIndex]),
}
break
}
}
return
}
|