1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
|
//
// Copyright 2020-2022 Sean C Foley
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
package ipaddr
import (
"math/big"
"math/bits"
"unsafe"
"github.com/seancfoley/ipaddress-go/ipaddr/addrerr"
"github.com/seancfoley/ipaddress-go/ipaddr/addrstr"
)
// SegInt is an integer type for holding generic address segment values. It is at least as large as all address segment values: [IPv6SegInt], [IPv4SegInt], [MACSegInt].
type SegInt = uint32 // must be at least uint16 to handle IPv6, at least 32 to handle single segment IPv4, and no larger than 64 because we use bits.TrailingZeros64. IP address segment code uses bits.TrailingZeros32 and bits.LeadingZeros32, so it cannot be larger than 32.
const SegIntSize = 32 // must match the bit count of SegInt
type SegIntCount = uint64 // must be able to hold: (max value of SegInt) + 1
type segderiver interface {
// deriveNew produces a new segment with the same bit count as the old
deriveNewMultiSeg(val, upperVal SegInt, prefLen PrefixLen) divisionValues
// deriveNew produces a new segment with the same bit count as the old
deriveNewSeg(val SegInt, prefLen PrefixLen) divisionValues
}
type segmentValues interface {
// getSegmentValue gets the lower value for a segment
getSegmentValue() SegInt
// getUpperSegmentValue gets the upper value for a segment
getUpperSegmentValue() SegInt
}
// compareSegInt returns a negative number, 0 or a positive number if integer one is less than, equal to, or greater than integer two.
func compareSegInt(one, two SegInt) int {
if one < two {
return -1
} else if one > two {
return 1
}
return 0
}
func createAddressSegment(vals divisionValues) *AddressSegment {
return &AddressSegment{
addressSegmentInternal{
addressDivisionInternal{
addressDivisionBase{
vals,
},
},
},
}
}
type addressSegmentInternal struct {
addressDivisionInternal
}
func (seg *addressSegmentInternal) sameTypeContains(otherSeg *AddressSegment) bool {
return otherSeg.GetSegmentValue() >= seg.GetSegmentValue() &&
otherSeg.GetUpperSegmentValue() <= seg.GetUpperSegmentValue()
}
func (seg *addressSegmentInternal) contains(other AddressSegmentType) bool {
if other == nil {
return true
}
otherSeg := other.ToSegmentBase()
if seg.toAddressSegment() == otherSeg || otherSeg == nil {
return true
} else if matchesStructure, _ := seg.matchesStructure(other); matchesStructure {
return seg.sameTypeContains(otherSeg)
}
return false
}
func (seg *addressSegmentInternal) equal(other AddressSegmentType) bool {
if other == nil || other.ToSegmentBase() == nil {
return false
}
if seg.isMultiple() {
if other.IsMultiple() {
matches, _ := seg.matchesStructure(other)
otherDivision := other.ToSegmentBase()
return matches && segValsSame(seg.getSegmentValue(), otherDivision.getSegmentValue(),
seg.getUpperSegmentValue(), otherDivision.getUpperSegmentValue())
} else {
return false
}
} else if other.IsMultiple() {
return false
}
matches, _ := seg.matchesStructure(other)
otherDivision := other.ToSegmentBase()
return matches && segValSame(seg.GetSegmentValue(), otherDivision.GetSegmentValue())
}
func (seg *addressSegmentInternal) equalsSegment(other *AddressSegment) bool {
matchesStructure, _ := seg.matchesStructure(other)
return matchesStructure && seg.sameTypeEquals(other)
}
func (seg *addressSegmentInternal) sameTypeEquals(other *AddressSegment) bool {
if seg.isMultiple() {
return other.isMultiple() && segValsSame(seg.getSegmentValue(), other.getSegmentValue(),
seg.getUpperSegmentValue(), other.getUpperSegmentValue())
}
return !other.isMultiple() && seg.getSegmentValue() == other.getSegmentValue()
}
// PrefixContains returns whether the prefix values in the prefix of the given segment are also prefix values in this segment.
// It returns whether the prefix of this segment contains the prefix of the given segment.
func (seg *addressSegmentInternal) PrefixContains(other AddressSegmentType, prefixLength BitCount) bool {
prefixLength = checkBitCount(prefixLength, seg.GetBitCount())
shift := seg.GetBitCount() - prefixLength
if shift <= 0 {
return seg.contains(other)
}
return (other.GetSegmentValue()>>uint(shift)) >= (seg.GetSegmentValue()>>uint(shift)) &&
(other.GetUpperSegmentValue()>>uint(shift)) <= (seg.GetUpperSegmentValue()>>uint(shift))
}
// PrefixEqual returns whether the prefix bits of this segment match the same bits of the given segment.
// It returns whether the two segments share the same range of prefix values using the given prefix length.
func (seg *addressSegmentInternal) PrefixEqual(other AddressSegmentType, prefixLength BitCount) bool {
prefixLength = checkBitCount(prefixLength, seg.GetBitCount())
shift := seg.GetBitCount() - prefixLength
if shift <= 0 {
return seg.GetSegmentValue() == other.GetSegmentValue() && seg.GetUpperSegmentValue() == other.GetUpperSegmentValue()
}
return (other.GetSegmentValue()>>uint(shift)) == (seg.GetSegmentValue()>>uint(shift)) &&
(other.GetUpperSegmentValue()>>uint(shift)) == (seg.GetUpperSegmentValue()>>uint(shift))
}
func (seg *addressSegmentInternal) toAddressSegment() *AddressSegment {
return (*AddressSegment)(unsafe.Pointer(seg))
}
// GetSegmentValue returns the lower value of the segment value range.
func (seg *addressSegmentInternal) GetSegmentValue() SegInt {
vals := seg.divisionValues
if vals == nil {
return 0
}
return vals.getSegmentValue()
}
// GetUpperSegmentValue returns the upper value of the segment value range.
func (seg *addressSegmentInternal) GetUpperSegmentValue() SegInt {
vals := seg.divisionValues
if vals == nil {
return 0
}
return vals.getUpperSegmentValue()
}
// Matches returns true if the segment range matches the given single value.
func (seg *addressSegmentInternal) Matches(value SegInt) bool {
return seg.matches(DivInt(value))
}
// MatchesWithMask applies the mask to this segment and then compares the result with the given value,
// returning true if the range of the resulting segment matches that single value.
func (seg *addressSegmentInternal) MatchesWithMask(value, mask SegInt) bool {
return seg.matchesWithMask(DivInt(value), DivInt(mask))
}
// MatchesValsWithMask applies the mask to this segment and then compares the result with the given values,
// returning true if the range of the resulting segment matches the given range.
func (seg *addressSegmentInternal) MatchesValsWithMask(lowerValue, upperValue, mask SegInt) bool {
return seg.matchesValsWithMask(DivInt(lowerValue), DivInt(upperValue), DivInt(mask))
}
// GetPrefixCountLen returns the count of the number of distinct prefix values for the given prefix length in the range of values of this segment.
func (seg *addressSegmentInternal) GetPrefixCountLen(segmentPrefixLength BitCount) *big.Int {
return bigZero().SetUint64(seg.GetPrefixValueCountLen(segmentPrefixLength))
}
// GetPrefixValueCountLen returns the same value as GetPrefixCountLen as an integer.
func (seg *addressSegmentInternal) GetPrefixValueCountLen(segmentPrefixLength BitCount) SegIntCount {
return getPrefixValueCount(seg.toAddressSegment(), segmentPrefixLength)
}
// GetValueCount returns the same value as GetCount as an integer.
func (seg *addressSegmentInternal) GetValueCount() SegIntCount {
return uint64(seg.GetUpperSegmentValue()-seg.GetSegmentValue()) + 1
}
// GetMaxValue gets the maximum possible value for this type or version of segment, determined by the number of bits.
//
// For the highest range value of this particular segment, use GetUpperSegmentValue.
func (seg *addressSegmentInternal) GetMaxValue() SegInt {
return ^(^SegInt(0) << uint(seg.GetBitCount()))
}
// TestBit returns true if the bit in the lower value of this segment at the given index is 1, where index 0 refers to the least significant bit.
// In other words, it computes (bits & (1 << n)) != 0), using the lower value of this section.
// TestBit will panic if n < 0, or if it matches or exceeds the bit count of this item.
func (seg *addressSegmentInternal) TestBit(n BitCount) bool {
value := seg.GetSegmentValue()
if n < 0 || n > seg.GetBitCount() {
panic("invalid bit index")
}
return (value & (1 << uint(n))) != 0
}
// IsOneBit returns true if the bit in the lower value of this segment at the given index is 1, where index 0 refers to the most significant bit.
// IsOneBit will panic if bitIndex is less than zero, or if it is larger than the bit count of this item.
func (seg *addressSegmentInternal) IsOneBit(segmentBitIndex BitCount) bool {
value := seg.GetSegmentValue()
bitCount := seg.GetBitCount()
if segmentBitIndex < 0 || segmentBitIndex > seg.GetBitCount() {
panic("invalid bit index")
}
return (value & (1 << uint(bitCount-(segmentBitIndex+1)))) != 0
}
func (seg *addressSegmentInternal) getLower() *AddressSegment {
if !seg.isMultiple() {
return seg.toAddressSegment()
}
vals := seg.divisionValues
var newVals divisionValues
if vals != nil {
newVals = seg.deriveNewMultiSeg(seg.GetSegmentValue(), seg.GetSegmentValue(), seg.getDivisionPrefixLength())
}
return createAddressSegment(newVals)
}
func (seg *addressSegmentInternal) getUpper() *AddressSegment {
if !seg.isMultiple() {
return seg.toAddressSegment()
}
vals := seg.divisionValues
var newVals divisionValues
if vals != nil {
newVals = seg.deriveNewMultiSeg(seg.GetUpperSegmentValue(), seg.GetUpperSegmentValue(), seg.getDivisionPrefixLength())
}
return createAddressSegment(newVals)
}
func (seg *addressSegmentInternal) withoutPrefixLen() *AddressSegment {
if seg.isPrefixed() {
return createAddressDivision(seg.derivePrefixed(nil)).ToSegmentBase()
}
return seg.toAddressSegment()
}
func (seg *addressSegmentInternal) getDefaultSegmentWildcardString() string {
return SegmentWildcardStr
}
func (seg *addressSegmentInternal) iterator() Iterator[*AddressSegment] {
return seg.segmentIterator(seg.getDivisionPrefixLength(), false, false)
}
func (seg *addressSegmentInternal) identityIterator() Iterator[*AddressSegment] {
return &singleSegmentIterator{original: seg.toAddressSegment()}
}
func (seg *addressSegmentInternal) prefixBlockIterator() Iterator[*AddressSegment] {
return seg.segmentIterator(seg.getDivisionPrefixLength(), true, true)
}
func (seg *addressSegmentInternal) prefixedBlockIterator(segPrefLen BitCount) Iterator[*AddressSegment] {
return seg.segmentIterator(cacheBitCount(segPrefLen), true, true)
}
func (seg *addressSegmentInternal) prefixIterator() Iterator[*AddressSegment] {
return seg.segmentIterator(seg.getDivisionPrefixLength(), true, false)
}
func (seg *addressSegmentInternal) prefixedIterator(segPrefLen BitCount) Iterator[*AddressSegment] {
return seg.segmentIterator(cacheBitCount(segPrefLen), true, false)
}
func (seg *addressSegmentInternal) segmentIterator(segPrefLen PrefixLen, isPrefixIterator, isBlockIterator bool) Iterator[*AddressSegment] {
vals := seg.divisionValues
if vals == nil {
return segIterator(seg,
0,
0,
0,
nil,
nil,
false,
false,
)
}
return segIterator(seg,
seg.getSegmentValue(),
seg.getUpperSegmentValue(),
seg.getBitCount(),
vals,
segPrefLen,
isPrefixIterator,
isBlockIterator,
)
}
// GetLeadingBitCount returns the number of consecutive leading one or zero bits.
// If ones is true, returns the number of consecutive leading one bits.
// Otherwise, returns the number of consecutive leading zero bits.
//
// This method applies only to the lower value of the range if this segment represents multiple values.
func (seg *addressSegmentInternal) GetLeadingBitCount(ones bool) BitCount {
extraLeading := 32 - seg.GetBitCount()
val := seg.GetSegmentValue()
if ones {
//leading ones
return BitCount(bits.LeadingZeros32(uint32(^val&seg.GetMaxValue()))) - extraLeading
}
// leading zeros
return BitCount(bits.LeadingZeros32(uint32(val))) - extraLeading
}
// GetTrailingBitCount returns the number of consecutive trailing one or zero bits.
// If ones is true, returns the number of consecutive trailing zero bits.
// Otherwise, returns the number of consecutive trailing one bits.
//
// This method applies only to the lower value of the range if this segment represents multiple values.
func (seg *addressSegmentInternal) GetTrailingBitCount(ones bool) BitCount {
val := seg.GetSegmentValue()
if ones {
// trailing ones
return BitCount(bits.TrailingZeros32(uint32(^val)))
}
//trailing zeros
bitCount := uint(seg.GetBitCount())
return BitCount(bits.TrailingZeros32(uint32(val | (1 << bitCount))))
}
// GetSegmentNetworkMask returns a value comprising the same number of total bits as the bit-length of this segment,
// the value that is all one-bits for the given number of bits followed by all zero-bits.
func (seg *addressSegmentInternal) GetSegmentNetworkMask(networkBits BitCount) SegInt {
bitCount := seg.GetBitCount()
networkBits = checkBitCount(networkBits, bitCount)
return seg.GetMaxValue() & (^SegInt(0) << uint(bitCount-networkBits))
}
// GetSegmentHostMask returns a value comprising the same number of total bits as the bit-length of this segment,
// the value that is all zero-bits for the given number of bits followed by all one-bits.
func (seg *addressSegmentInternal) GetSegmentHostMask(networkBits BitCount) SegInt {
bitCount := seg.GetBitCount()
networkBits = checkBitCount(networkBits, bitCount)
return ^(^SegInt(0) << uint(bitCount-networkBits))
}
var (
// wildcards differ, for divs we use only range since div size not implicit, here we use both range and *
hexParamsSeg = new(addrstr.IPStringOptionsBuilder).SetRadix(16).SetSegmentStrPrefix(HexPrefix).ToOptions()
decimalParamsSeg = new(addrstr.IPStringOptionsBuilder).SetRadix(10).ToOptions()
)
// We do not need to "override" ToNormalizedString() and ToHexString(bool) because neither prints leading zeros according to bit count, so zero-segments of type IPv4/IPv6/MAC are printed consistently
// ToNormalizedString produces a string that is consistent for all address segments of the same type and version.
// IPv4 segments use base 10, while other segment types use base 16.
func (seg *addressSegmentInternal) ToNormalizedString() string {
stringer := func() string {
switch seg.getDefaultTextualRadix() {
case 10:
return seg.toStringOpts(decimalParamsSeg)
default:
return seg.toStringOpts(macCompressedParams)
}
}
if seg.divisionValues != nil {
if cache := seg.getCache(); cache != nil {
return cacheStr(&cache.cachedNormalizedString, stringer)
}
}
return stringer()
}
// ToHexString writes this address segment as a single hexadecimal value (possibly two values if a range that is not a prefixed block),
// the number of digits according to the bit count, with or without a preceding "0x" prefix.
//
// For segments, the error is always nil.
func (seg *addressSegmentInternal) ToHexString(with0xPrefix bool) (string, addrerr.IncompatibleAddressError) {
var stringer func() string
if with0xPrefix {
stringer = func() string {
return seg.toStringOpts(hexParamsSeg)
}
} else {
stringer = func() string {
return seg.toStringOpts(macCompressedParams)
}
}
if seg.divisionValues != nil {
if cache := seg.getCache(); cache != nil {
if with0xPrefix {
return cacheStr(&cache.cached0xHexString, stringer), nil
}
return cacheStr(&cache.cachedHexString, stringer), nil
}
}
return stringer(), nil
}
func (seg *addressSegmentInternal) reverseMultiValSeg(perByte bool) (res *AddressSegment, err addrerr.IncompatibleAddressError) {
if isReversible := seg.isReversibleRange(perByte); isReversible {
// all reversible multi-valued segs reverse to the same segment
res = seg.withoutPrefixLen()
return
}
err = &incompatibleAddressError{addressError{key: "ipaddress.error.reverseRange"}}
return
}
// ReverseBits returns a segment with the bits reversed.
//
// If this segment represents a range of values that cannot be reversed, then this returns an error.
//
// To be reversible, a range must include all values except possibly the largest and/or smallest, which reverse to themselves.
// Otherwise the result is not contiguous and thus cannot be represented by a sequential range of values.
//
// If perByte is true, the bits are reversed within each byte, otherwise all the bits are reversed.
func (seg *addressSegmentInternal) ReverseBits(perByte bool) (res *AddressSegment, err addrerr.IncompatibleAddressError) {
if seg.divisionValues == nil {
res = seg.toAddressSegment()
return
}
if seg.isMultiple() {
return seg.reverseMultiValSeg(perByte)
}
byteCount := seg.GetByteCount()
oldVal := seg.GetSegmentValue()
var val SegInt
switch byteCount {
case 1:
val = SegInt(reverseUint8(uint8(oldVal)))
case 2:
val = SegInt(reverseUint16(uint16(oldVal)))
if perByte {
val = ((val & 0xff) << 8) | (val >> 8)
}
case 3:
val = reverseUint32(uint32(oldVal)) >> 8
if perByte {
val = ((val & 0xff) << 16) | (val & 0xff00) | (val >> 16)
}
case 4:
val = reverseUint32(uint32(oldVal))
if perByte {
val = ((val & 0xff) << 24) | (val&0xff00)<<8 | (val&0xff0000)>>8 | (val >> 24)
}
default: // SegInt is at most 32 bits so this default case is not possible
err = &incompatibleAddressError{addressError{key: "ipaddress.error.reverseRange"}}
return
}
if oldVal == val && !seg.isPrefixed() {
res = seg.toAddressSegment()
} else {
res = createAddressSegment(seg.deriveNewSeg(val, nil))
}
return
}
// ReverseBytes returns a segment with the bytes reversed.
//
// If this segment represents a range of values that cannot be reversed, then this returns an error.
//
// To be reversible, a range must include all values except possibly the largest and/or smallest, which reverse to themselves.
// Otherwise the result is not contiguous and thus cannot be represented by a sequential range of values.
func (seg *addressSegmentInternal) ReverseBytes() (res *AddressSegment, err addrerr.IncompatibleAddressError) {
byteCount := seg.GetByteCount()
if byteCount <= 1 {
res = seg.toAddressSegment()
return
}
if seg.isMultiple() {
return seg.reverseMultiValSeg(false)
}
oldVal := seg.GetSegmentValue()
var val SegInt
switch byteCount {
case 2:
val = ((oldVal & 0xff) << 8) | (oldVal >> 8)
case 3:
val = ((oldVal & 0xff) << 16) | (oldVal & 0xff00) | (oldVal >> 16)
case 4:
val = ((oldVal & 0xff) << 24) | (oldVal&0xff00)<<8 | (oldVal&0xff0000)>>8 | (oldVal >> 24)
default: // SegInt is at most 32 bits so this default case is not possible
err = &incompatibleAddressError{addressError{key: "ipaddress.error.reverseRange"}}
return
}
if oldVal == val && !seg.isPrefixed() {
res = seg.toAddressSegment()
} else {
res = createAddressSegment(seg.deriveNewSeg(val, nil))
}
return
}
func (seg *addressSegmentInternal) isReversibleRange(perByte bool) (isReversible bool) {
// Consider the case of reversing the bits of a range
// Any range that can be successfully reversed must span all bits (otherwise after flipping you'd have a range in which the lower bit is constant, which is impossible in any contiguous range)
// So that means at least one value has 0xxxx and another has 1xxxx (using 5 bits for our example). This means you must have the values 01111 and 10000 since the range is contiguous.
// But reversing a range twice results in the original again, meaning the reversed must also be reversible, so the reversed also has 01111 and 10000.
// So this means both the original and the reversed also have those two patterns flipped, which are 00001 and 11110.
// So this means both ranges must span from at most 1 to at least 11110.
// However, the two remaining values, 0 and 11111, are optional, as they are boundary value and remain themselves when reversed, and hence have no effect on whether the reversed range is contiguous.
// So the only reversible ranges are 0-11111, 0-11110, 1-11110, and 1-11111.
//-----------------------
// Consider the case of reversing each of the bytes of a range.
//
// You can apply the same argument to the top multiple byte,
// which means it is 0 or 1 to 254 or 255.
// Suppose there is another byte to follow.
// If you take the upper byte range, and you hold it constant, then reversing the next byte applies the same argument to that byte.
// And so the lower byte must span from at most 1 to at least 11111110.
// This argument holds when holding the upper byte constant at any value.
// So the lower byte must span from at most 1 to at least 111111110 for any value.
// So you have x 00000001-x 111111110 and y 00000001-y 111111110 and so on.
// But all the bytes form a range, so you must also have the values in-between.
// So that means you have 1 00000001 to 1 111111110 to 10 111111110 to 11 111111110 all the way to x 11111110, where x is at least 11111110.
// In all cases, the upper byte lower value is at most 1, and 1 < 10000000.
// That means you always have 10000000 00000000.
// So you have the reverse as well (as argued above, for any value we also have the reverse).
// So you always have 00000001 00000000.
//
// In other words, if the upper byte has lower 0, then the full bytes lower must be at most 0 00000001
// Otherwise, when the upper byte has lower 1, the the full bytes lower is at most 1 00000000.
//
// In other words, if any upper byte has lower value 1, then all lower values to follow are 0.
// If all upper bytes have lower value 0, then the next byte is permitted to have lower value 1.
//
// In summary, any upper byte having lower of 1 forces the remaining lower values to be 0.
//
// WHen the upper bytes are all zero, and thus the lower is at most 0 0 0 0 1,
// then the only remaining lower value is 0 0 0 0 0. This reverses to itself, so it is optional.
//
// The same argument applies to upper boundaries.
//
//-----------------------
// Consider the case of reversing the bytes of a range.
// Any range that can be successfully reversed must span all bits
// (otherwise after flipping you'd have a range in which a lower bit is constant, which is impossible in any contiguous range)
// So that means at least one value has 0xxxxx and another has 1xxxxx (we use 6 bits for our example, and we assume each byte has 3 bits).
// This means you must have the values 011111 and 100000 since the range is contiguous.
// But reversing a range twice results in the original again, meaning the reversed must also be reversible, so the reversed also has 011111 and 100000.
// So this means both the original and the reversed also have those two bytes in each flipped, which are 111011 and 000100.
// So the range must have 000100, 011111, 100000, 111011, so it must be at least 000100 to 111011.
// So what if the range does not have 000001? then the reversed range cannot have 001000, the byte-reversed address.
// But we know it spans 000100 to 111011. So the original must have 000001.
// What if it does not have 111110? Then the reversed cannot have 110111, the byte-reversed address.
// But we know it ranges from 000100 to 111011. So the original must have 111110.
// So it must range from 000001 to 111110. The only remaining values in question are 000000 and 111111.
// But once again, the two remaining values are optional, because the byte-reverse to themselves.
// So for the byte-reverse case, we have the same potential ranges as in the bit-reverse case: 0-111111, 0-111110, 1-111110, and 1-111111
if perByte {
byteCount := seg.GetByteCount()
bitCount := seg.GetBitCount()
val := seg.GetSegmentValue()
upperVal := seg.GetUpperSegmentValue()
for i := 1; i <= byteCount; i++ {
bitShift := i << 3
shift := bitCount - BitCount(bitShift)
byteVal := val >> uint(shift)
upperByteVal := upperVal >> uint(shift)
if byteVal != upperByteVal {
if byteVal > 1 || upperByteVal < 254 {
return false
}
i++
if i <= byteCount {
lowerIsZero := byteVal == 1
upperIsMax := upperByteVal == 254
for {
bitShift = i << 3
shift = bitCount - BitCount(bitShift)
byteVal = val >> uint(shift)
upperByteVal = upperVal >> uint(shift)
if lowerIsZero {
if byteVal != 0 {
return
}
} else {
if byteVal > 1 {
return
}
lowerIsZero = byteVal == 1
}
if upperIsMax {
if upperByteVal != 255 {
return
}
} else {
if upperByteVal < 254 {
return
}
upperIsMax = upperByteVal == 254
}
i++
if i > byteCount {
break
}
}
}
return true
}
}
return true
}
isReversible = seg.GetSegmentValue() <= 1 && seg.GetUpperSegmentValue() >= seg.GetMaxValue()-1
return
}
//// only needed for godoc / pkgsite
// GetBitCount returns the number of bits in each value comprising this address item.
func (seg *addressSegmentInternal) GetBitCount() BitCount {
return seg.addressDivisionInternal.GetBitCount()
}
// GetByteCount returns the number of bytes required for each value comprising this address item.
func (seg *addressSegmentInternal) GetByteCount() int {
return seg.addressDivisionInternal.GetByteCount()
}
// GetValue returns the lowest value in the address segment range as a big integer.
func (seg *addressSegmentInternal) GetValue() *BigDivInt {
return seg.addressDivisionInternal.GetValue()
}
// GetUpperValue returns the highest value in the address segment range as a big integer.
func (seg *addressSegmentInternal) GetUpperValue() *BigDivInt {
return seg.addressDivisionInternal.GetUpperValue()
}
// Bytes returns the lowest value in the address segment range as a byte slice.
func (seg *addressSegmentInternal) Bytes() []byte {
return seg.addressDivisionInternal.Bytes()
}
// UpperBytes returns the highest value in the address segment range as a byte slice.
func (seg *addressSegmentInternal) UpperBytes() []byte {
return seg.addressDivisionInternal.UpperBytes()
}
// CopyBytes copies the lowest value in the address segment range into a byte slice.
//
// If the value can fit in the given slice, the value is copied into that slice and a length-adjusted sub-slice is returned.
// Otherwise, a new slice is created and returned with the value.
func (seg *addressSegmentInternal) CopyBytes(bytes []byte) []byte {
return seg.addressDivisionInternal.CopyBytes(bytes)
}
// CopyUpperBytes copies the highest value in the address segment range into a byte slice.
//
// If the value can fit in the given slice, the value is copied into that slice and a length-adjusted sub-slice is returned.
// Otherwise, a new slice is created and returned with the value.
func (seg *addressSegmentInternal) CopyUpperBytes(bytes []byte) []byte {
return seg.addressDivisionInternal.CopyUpperBytes(bytes)
}
// IsZero returns whether this segment matches exactly the value of zero.
func (seg *addressSegmentInternal) IsZero() bool {
return seg.addressDivisionInternal.IsZero()
}
// IncludesZero returns whether this segment includes the value of zero within its range.
func (seg *addressSegmentInternal) IncludesZero() bool {
return seg.addressDivisionInternal.IncludesZero()
}
// IsMax returns whether this segment matches exactly the maximum possible value, the value whose bits are all ones.
func (seg *addressSegmentInternal) IsMax() bool {
return seg.addressDivisionInternal.IsMax()
}
// IncludesMax returns whether this segment includes the max value, the value whose bits are all ones, within its range.
func (seg *addressSegmentInternal) IncludesMax() bool {
return seg.addressDivisionInternal.IncludesMax()
}
// IsFullRange returns whether the segment range includes all possible values for its bit length.
//
// This is true if and only if both IncludesZero and IncludesMax return true.
func (seg *addressSegmentInternal) IsFullRange() bool {
return seg.addressDivisionInternal.IsFullRange()
}
// ContainsPrefixBlock returns whether the segment range includes the block of values for the given prefix length.
func (seg *addressSegmentInternal) ContainsPrefixBlock(prefixLen BitCount) bool {
return seg.addressDivisionInternal.ContainsPrefixBlock(prefixLen)
}
// ContainsSinglePrefixBlock returns whether the segment range matches exactly the block of values for the given prefix length and has just a single prefix for that prefix length.
func (seg *addressSegmentInternal) ContainsSinglePrefixBlock(prefixLen BitCount) bool {
return seg.addressDivisionInternal.ContainsSinglePrefixBlock(prefixLen)
}
// GetMinPrefixLenForBlock returns the smallest prefix length such that this segment includes the block of all values for that prefix length.
//
// If the entire range can be described this way, then this method returns the same value as GetPrefixLenForSingleBlock.
//
// There may be a single prefix, or multiple possible prefix values in this item for the returned prefix length.
// Use GetPrefixLenForSingleBlock to avoid the case of multiple prefix values.
//
// If this segment represents a single value, this returns the bit count.
func (seg *addressSegmentInternal) GetMinPrefixLenForBlock() BitCount {
return seg.addressDivisionInternal.GetMinPrefixLenForBlock()
}
// GetPrefixLenForSingleBlock returns a prefix length for which there is only one prefix in this segment,
// and the range of values in this segment matches the block of all values for that prefix.
//
// If the range of segment values can be described this way, then this method returns the same value as GetMinPrefixLenForBlock.
//
// If no such prefix length exists, returns nil.
//
// If this segment represents a single value, this returns the bit count of the segment.
func (seg *addressSegmentInternal) GetPrefixLenForSingleBlock() PrefixLen {
return seg.addressDivisionInternal.GetPrefixLenForSingleBlock()
}
// IsSinglePrefix determines if the segment has a single prefix value for the given prefix length. You can call GetPrefixCountLen to get the count of prefixes.
func (seg *addressSegmentInternal) IsSinglePrefix(divisionPrefixLength BitCount) bool {
return seg.addressDivisionInternal.IsSinglePrefix(divisionPrefixLength)
}
//// end needed for godoc / pkgsite
//
// AddressSegment represents a single segment of an address. A segment contains a single value or a range of sequential values and it has an assigned bit length.
//
// The current implementations of this type are the most common representations of IPv4, IPv6 and MAC;
// segments are 1 byte for Ipv4, they are two bytes for Ipv6, and they are 1 byte for MAC addresses.
//
// There are alternative forms of dividing addresses into divisions, such as the dotted representation for MAC like "1111.2222.3333",
// the embedded IPv4 representation for IPv6 like "f:f:f:f:f:f:1.2.3.4", the inet_aton formats like "1.2" for IPv4, and so on.
//
// The general rules are that segments have a whole number of bytes, and in a given address all segments have the same length.
//
// When alternatives forms do not follow the general rules for segments, you can use [AddressDivision] instead.
// Divisions do not have the restriction that divisions of an address are equal length and a whole number of bytes.
// Divisions can be grouped using [AddressDivisionGrouping].
//
// AddressSegment objects are immutable and thus are also concurrency-safe.
type AddressSegment struct {
addressSegmentInternal
}
// Contains returns whether this is same type and version as the given segment and whether it contains all values in the given segment.
func (seg *AddressSegment) Contains(other AddressSegmentType) bool {
if seg == nil {
return other == nil || other.ToSegmentBase() == nil
}
return seg.contains(other)
}
// Equal returns whether the given segment is equal to this segment.
// Two segments are equal if they match:
// - type/version (IPv4, IPv6, MAC)
// - value range
// Prefix lengths are ignored.
func (seg *AddressSegment) Equal(other AddressSegmentType) bool {
if seg == nil {
return other == nil || other.ToDiv() == nil
}
return seg.equal(other)
}
// Compare returns a negative integer, zero, or a positive integer if this address segment is less than, equal, or greater than the given item.
// Any address item is comparable to any other. All address items use CountComparator to compare.
func (seg *AddressSegment) Compare(item AddressItem) int {
return CountComparator.Compare(seg, item)
}
// CompareSize compares the counts of two items, the number of individual values within.
//
// Rather than calculating counts with GetCount, there can be more efficient ways of determining whether one represents more individual values than another.
//
// CompareSize returns a positive integer if this segment has a larger count than the item given, zero if they are the same, or a negative integer if the other has a larger count.
func (seg *AddressSegment) CompareSize(other AddressItem) int {
if seg == nil {
if isNilItem(other) {
return 0
}
// we have size 0, other has size >= 1
return -1
}
return seg.compareSize(other)
}
// GetLower returns a segment representing just the lowest value in the range, which will be the same segment if it represents a single value.
func (seg *addressSegmentInternal) GetLower() *AddressSegment {
return seg.getLower()
}
// GetUpper returns a segment representing just the highest value in the range, which will be the same segment if it represents a single value.
func (seg *addressSegmentInternal) GetUpper() *AddressSegment {
return seg.getUpper()
}
// IsMultiple returns whether this segment represents multiple values.
func (seg *AddressSegment) IsMultiple() bool {
return seg != nil && seg.isMultiple()
}
// GetCount returns the count of possible distinct values for this item.
// If not representing multiple values, the count is 1.
//
// For instance, a segment with the value range of 3-7 has count 5.
//
// Use IsMultiple if you simply want to know if the count is greater than 1.
func (seg *AddressSegment) GetCount() *big.Int {
if seg == nil {
return bigZero()
}
return seg.getCount()
}
// IsIP returns true if this segment originated as an IPv4 or IPv6 segment, or an implicitly zero-valued IP segment. If so, use ToIP to convert back to the IP-specific type.
func (seg *AddressSegment) IsIP() bool {
return seg != nil && seg.matchesIPSegment()
}
// IsIPv4 returns true if this segment originated as an IPv4 segment. If so, use ToIPv4 to convert back to the IPv4-specific type.
func (seg *AddressSegment) IsIPv4() bool {
return seg != nil && seg.matchesIPv4Segment()
}
// IsIPv6 returns true if this segment originated as an IPv6 segment. If so, use ToIPv6 to convert back to the IPv6-specific type.
func (seg *AddressSegment) IsIPv6() bool {
return seg != nil && seg.matchesIPv6Segment()
}
// IsMAC returns true if this segment originated as a MAC segment. If so, use ToMAC to convert back to the MAC-specific type.
func (seg *AddressSegment) IsMAC() bool {
return seg != nil && seg.matchesMACSegment()
}
// Iterator provides an iterator to iterate through the individual address segments of this address segment.
//
// Call IsMultiple to determine if this instance represents multiple address segments, or GetValueCount for the count.
func (seg *AddressSegment) Iterator() Iterator[*AddressSegment] {
if seg == nil {
return nilSegIterator()
}
return seg.iterator()
}
// ToIP converts to an IPAddressSegment if this division originated as an IPv4 or IPv6 segment, or an implicitly zero-valued IP segment.
// If not, ToIP returns nil.
//
// ToIP can be called with a nil receiver, enabling you to chain this method with methods that might return a nil pointer.
func (seg *AddressSegment) ToIP() *IPAddressSegment {
if seg.IsIP() {
return (*IPAddressSegment)(unsafe.Pointer(seg))
}
return nil
}
// ToIPv4 converts to an IPv4AddressSegment if this segment originated as an IPv4 segment.
// If not, ToIPv4 returns nil.
//
// ToIPv4 can be called with a nil receiver, enabling you to chain this method with methods that might return a nil pointer.
func (seg *AddressSegment) ToIPv4() *IPv4AddressSegment {
if seg.IsIPv4() {
return (*IPv4AddressSegment)(unsafe.Pointer(seg))
}
return nil
}
// ToIPv6 converts to an IPv6AddressSegment if this segment originated as an IPv6 segment.
// If not, ToIPv6 returns nil.
//
// ToIPv6 can be called with a nil receiver, enabling you to chain this method with methods that might return a nil pointer.
func (seg *AddressSegment) ToIPv6() *IPv6AddressSegment {
if seg.IsIPv6() {
return (*IPv6AddressSegment)(unsafe.Pointer(seg))
}
return nil
}
// ToMAC converts to a MACAddressSegment if this segment originated as a MAC segment.
// If not, ToMAC returns nil.
//
// ToMAC can be called with a nil receiver, enabling you to chain this method with methods that might return a nil pointer.
func (seg *AddressSegment) ToMAC() *MACAddressSegment {
if seg.IsMAC() {
return (*MACAddressSegment)(seg)
}
return nil
}
// ToSegmentBase is an identity method.
//
// ToSegmentBase can be called with a nil receiver, enabling you to chain this method with methods that might return a nil pointer.
func (seg *AddressSegment) ToSegmentBase() *AddressSegment {
return seg
}
// ToDiv converts to an AddressDivision, a polymorphic type usable with all address segments and divisions.
// Afterwards, you can convert back with ToSegmentBase.
//
// ToDiv can be called with a nil receiver, enabling you to chain this method with methods that might return a nil pointer.
func (seg *AddressSegment) ToDiv() *AddressDivision {
return (*AddressDivision)(unsafe.Pointer(seg))
}
// GetString produces a normalized string to represent the segment.
// If the segment is an IP segment string with CIDR network prefix block for its prefix length, then the string contains only the lower value of the block range.
// Otherwise, the explicit range will be printed.
// If the segment is not an IP segment, then the string is the same as that produced by GetWildcardString.
//
// The string returned is useful in the context of creating strings for address sections or full addresses,
// in which case the radix and bit-length can be deduced from the context.
// The String method produces strings more appropriate when no context is provided.
func (seg *AddressSegment) GetString() string {
if seg == nil {
return nilString()
}
return seg.getString()
}
// GetWildcardString produces a normalized string to represent the segment, favouring wildcards and range characters while ignoring any network prefix length.
// The explicit range of a range-valued segment will be printed.
//
// The string returned is useful in the context of creating strings for address sections or full addresses,
// in which case the radix and the bit-length can be deduced from the context.
// The String method produces strings more appropriate when no context is provided.
func (seg *AddressSegment) GetWildcardString() string {
if seg == nil {
return nilString()
}
return seg.getWildcardString()
}
// String produces a string that is useful when a segment string is provided with no context.
// If the segment was originally constructed as an IPv4 address segment it uses decimal, otherwise hexadecimal.
// It uses a string prefix for hex ("0x"), and does not use the wildcard '*', because division size is variable, so '*' is ambiguous.
// GetWildcardString is more appropriate in context with other segments or divisions. It does not use a string prefix and uses '*' for full-range segments.
// GetString is more appropriate in context with prefix lengths, it uses zeros instead of wildcards with full prefix block ranges alongside prefix lengths.
func (seg *AddressSegment) String() string {
if seg == nil {
return nilString()
}
return seg.toString()
}
func segsSame(onePref, twoPref PrefixLen, oneVal, twoVal, oneUpperVal, twoUpperVal SegInt) bool {
return onePref.Equal(twoPref) &&
oneVal == twoVal && oneUpperVal == twoUpperVal
}
func segValsSame(oneVal, twoVal, oneUpperVal, twoUpperVal SegInt) bool {
return oneVal == twoVal && oneUpperVal == twoUpperVal
}
func segValSame(oneVal, twoVal SegInt) bool {
return oneVal == twoVal
}
func getPrefixValueCount(segment *AddressSegment, segmentPrefixLength BitCount) SegIntCount {
shiftAdjustment := segment.GetBitCount() - segmentPrefixLength
if shiftAdjustment <= 0 {
return SegIntCount(segment.GetUpperSegmentValue()) - SegIntCount(segment.GetSegmentValue()) + 1
}
return SegIntCount(segment.GetUpperSegmentValue()>>uint(shiftAdjustment)) - SegIntCount(segment.GetSegmentValue()>>uint(shiftAdjustment)) + 1
}
func getSegmentPrefLen(
_ AddressSegmentSeries,
prefLen PrefixLen,
bitsPerSegment,
bitsMatchedSoFar BitCount,
segment *AddressSegment) PrefixLen {
if ipSeg := segment.ToIP(); ipSeg != nil {
return ipSeg.GetSegmentPrefixLen()
} else if prefLen != nil {
result := prefLen.Len() - bitsMatchedSoFar
if result <= bitsPerSegment {
if result < 0 {
result = 0
}
return cacheBitCount(result)
}
}
return nil
}
func getMatchingBits(segment1, segment2 *AddressSegment, maxBits, bitsPerSegment BitCount) BitCount {
if maxBits == 0 {
return 0
}
val1 := segment1.getSegmentValue()
val2 := segment2.getSegmentValue()
xor := val1 ^ val2
switch bitsPerSegment {
case IPv4BitsPerSegment:
return BitCount(bits.LeadingZeros8(uint8(xor)))
case IPv6BitsPerSegment:
return BitCount(bits.LeadingZeros16(uint16(xor)))
default:
return BitCount(bits.LeadingZeros32(xor)) - 32 + bitsPerSegment
}
}
|