1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
|
package x86
import (
. "github.com/mmcloughlin/avo/build"
. "github.com/mmcloughlin/avo/operand"
. "github.com/mmcloughlin/avo/reg"
)
var all = map[Spec][]VecPhysical{
S128: []VecPhysical{X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X12, X13, X14, X15, X16, X17, X18, X19, X20, X21, X22, X23, X24, X25, X26, X27, X28, X29, X30, X31},
S256: []VecPhysical{Y0, Y1, Y2, Y3, Y4, Y5, Y6, Y7, Y8, Y9, Y10, Y11, Y12, Y13, Y14, Y15, Y16, Y17, Y18, Y19, Y20, Y21, Y22, Y23, Y24, Y25, Y26, Y27, Y28, Y29, Y30, Y31},
S512: []VecPhysical{Z0, Z1, Z2, Z3, Z4, Z5, Z6, Z7, Z8, Z9, Z10, Z11, Z12, Z13, Z14, Z15, Z16, Z17, Z18, Z19, Z20, Z21, Z22, Z23, Z24, Z25, Z26, Z27, Z28, Z29, Z30, Z31},
}
func gp(c func() GPVirtual, g ...Register) Register {
if len(g) == 0 {
return c()
}
return g[0]
}
// load either emits a size-specific MOV operation based on the input immediate
// value, or returns the existing register. The optional destination register
// must be a general purpose register if provided. If not provided, a virtual
// register will be allocated if needed.
func load(ir Op, dst ...Register) (Register, uint) {
switch v := ir.(type) {
default:
panic("unsupported input operand")
case U8, I8:
g := gp(GP32, dst...)
MOVB(v, g.(GP).As8())
return g, 1
case U16, I16:
g := gp(GP32, dst...)
MOVW(v, g.(GP).As16())
return g, 2
case U32, I32:
g := gp(GP32, dst...)
MOVL(v, g)
return g, 4
case U64, I64:
g := gp(GP64, dst...)
MOVQ(v, g)
return g, 8
case Register:
return v, v.Size()
}
}
// VecList returns a slice of vector registers for the given Spec.
func VecList(s Spec, max int) []VecPhysical {
return all[s][:max]
}
// VecBroadcast broadcasts an immediate or general purpose register into a
// vector register. The broadcast size is based on the input operand size.
// If the input is a register, it may be necessary to convert it to the
// desired size. For example:
// reg := GP32()
// XORL(reg, reg)
// MOVB(U8(0x7F), reg.As8())
// mask := VecBroadcast(reg, XMM()) // will broadcast 0x0000007F0000007F0000007F0000007F
// mask := VecBroadcast(reg.As8(), XMM()) // will broadcast 0x7F7F7F7F7F7F7F7F7F7F7F7F7F7F7F7F
//
// If the `reg` register isn't needed, it would preferrable to use:
// mask := VecBroadcast(U8(0x7F), XMM())
func VecBroadcast(ir Op, xyz Register) Register {
vec := xyz.(Vec)
reg, size := load(ir)
// PINSR{B,W} accept either m{8,16} or r32. If the input was
// r{8,16} we need to cast to 32 bits.
if reg.Size() < 4 {
if gp, ok := reg.(GP); ok {
reg = gp.As32()
} else {
r32 := GP32()
switch reg.Size() {
case 1:
MOVBLZX(reg, r32)
case 2:
MOVWLZX(reg, r32)
}
reg = r32
}
}
switch size {
default:
panic("unsupported register size")
case 1:
PINSRB(Imm(0), reg, vec.AsX())
VPBROADCASTB(vec.AsX(), xyz)
case 2:
PINSRW(Imm(0), reg, vec.AsX())
VPBROADCASTW(vec.AsX(), xyz)
case 4:
PINSRD(Imm(0), reg, vec.AsX())
VPBROADCASTD(vec.AsX(), xyz)
case 8:
PINSRQ(Imm(0), reg, vec.AsX())
VPBROADCASTQ(vec.AsX(), xyz)
}
return xyz
}
// VectorLane is an interface for abstracting allocating and loading memory into
// vector registers. This is used during the map phase of the Vectorizer.
type VectorLane interface {
Read(Mem) Register
Offset(Mem) Mem
Alloc() Register
}
// Vectorizer is a map/reduce-based helper for constructing parallelized
// instruction pipelines.
type Vectorizer struct {
max int // total registers allowed
mapper func(VectorLane) Register // function to map the main operation to an output register
reducer func(a, b Register) Register // function to reduce the mapped output registers into one
}
// NewVectorizer creates a new vectorizing utility utilizing a max number of
// registers and a mapper function.
func NewVectorizer(max int, mapper func(VectorLane) Register) *Vectorizer {
return &Vectorizer{max: max, mapper: mapper}
}
// Reduce sets the reducer function in the Vectorizer.
func (v *Vectorizer) Reduce(h func(a, b Register) Register) *Vectorizer {
v.reducer = h
return v
}
// Compile runs the map and reduce phases for the given register size and
// parallel lane count. This can be called multiple times using different
// configurations to produce separate execution strides. The returned slice
// is dependent on the presence of a reducer. If no reducer is used, the
// slice will be all of the output registers from the map phase. If a reducer
// is defined, the result is slice containing the final reduced register.
func (v *Vectorizer) Compile(spec Spec, lanes int) []Register {
alloc := NewVectorAlloc(VecList(spec, v.max), lanes)
var out []Register
for alloc.NextLane() {
r := v.mapper(alloc)
out = append(out, r)
}
if v.reducer != nil {
for len(out) > 1 {
r := v.reducer(out[0], out[1])
out = append(out[2:], r)
}
}
return out
}
// ReduceOr performs a bitwise OR between two registers and returns the result.
// This can be used as the reducer for a Vectorizer.
func ReduceOr(a, b Register) Register {
VPOR(b, a, a)
return a
}
// ReduceAnd performs a bitwise AND between two registers and returns the result.
// This can be used as the reducer for a Vectorizer.
func ReduceAnd(a, b Register) Register {
VPAND(b, a, a)
return a
}
// VectorAlloc is a lower-level lane-driven register allocator. This pulls
// registers from a fixed list of physical registers for a given number of
// lanes. Registers are allocated in distinct blocks; one block for each lane.
type VectorAlloc struct {
vec []VecPhysical // all available physical registers
rd map[Mem]vecRead // loaded register index
off map[Mem]int // offset index
lanes int // number of lanes being compiled
lane int // current lane being compiled
size int // register size
}
type vecRead struct {
reg []Register
idx int
}
// NewVectorAlloc creates a new VectorAlloc instance.
func NewVectorAlloc(vec []VecPhysical, lanes int) *VectorAlloc {
return &VectorAlloc{
vec: vec,
rd: map[Mem]vecRead{},
off: map[Mem]int{},
lanes: lanes,
lane: -1,
size: int(vec[0].Size()),
}
}
// NextLane is used to advance the allocator to the next lane available lane.
// This returns false when no more lanes are available.
func (a *VectorAlloc) NextLane() bool {
next := a.lane + 1
if next < a.lanes {
a.lane = next
return true
}
return false
}
// Read implements the VectorLane interface. This reads the next register-sized
// memory region. Each read within a single lane will load adjacent memory
// regions. Subsequent lanes will read adjacent memory after the last read of
// the prior lane. This has special handling so that all reads are batched
// together. Because of this, Read calls should appear first in the mapper.
func (a *VectorAlloc) Read(mem Mem) Register {
if _, ok := a.off[mem]; ok {
panic("Offset and Read cannot current be combined for the same memory region")
}
rd := a.rd[mem]
if a.lane == 0 {
for i := 0; i < a.lanes; i++ {
r := a.Alloc()
VMOVDQU(mem.Offset(len(rd.reg)*a.size), r)
rd.reg = append(rd.reg, r)
}
}
r := rd.reg[rd.idx]
rd.idx++
a.rd[mem] = rd
return r
}
// Offset implements the VectorLane interface. This calculates the next
// register-sized memory offset. Each offset within a single lane will refer
// to adjacent memory regions. Subsequent lanes will obtain an offset of
// adjacent memory after the last offset of the prior lane.
func (a *VectorAlloc) Offset(mem Mem) Mem {
if _, ok := a.rd[mem]; ok {
panic("Read and Offset cannot current be combined for the same memory region")
}
n := a.off[mem]
a.off[mem] = n + 1
return mem.Offset(n * a.size)
}
// Alloc implements the VectorLane interface. This allocates a register for the
// current lane.
func (a *VectorAlloc) Alloc() Register {
if len(a.vec) == 0 {
panic("not enough vector registers available")
}
r := a.vec[0]
a.vec = a.vec[1:]
return r
}
|