File: index_pair_asm.go

package info (click to toggle)
golang-github-segmentio-asm 1.2.0%2Bgit20231107.1cfacc8-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 932 kB
  • sloc: asm: 6,093; makefile: 32
file content (318 lines) | stat: -rw-r--r-- 8,541 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
// +build ignore

package main

import (
	"fmt"
	"math"

	. "github.com/mmcloughlin/avo/build"
	. "github.com/mmcloughlin/avo/operand"
	. "github.com/mmcloughlin/avo/reg"
	. "github.com/segmentio/asm/build/internal/x86"
	"github.com/segmentio/asm/cpu"
)

func init() {
	ConstraintExpr("!purego")
}

func main() {
	generateIndexPair(indexPair1{})
	generateIndexPair(indexPair2{})
	generateIndexPair(indexPair4{})
	generateIndexPair(indexPair8{})
	generateIndexPair(indexPair16{})
	generateIndexPair(indexPair32{})
	Generate()
}

type indexPair interface {
	size() int
	test(a, b Mem)
}

type indexPairAVX2 interface {
	indexPair
	vpcmpeq(src0, src1, dst VecVirtual)
	vpmovmskb(tmp, src VecVirtual, spare, dst Register)
}

type indexPair1 struct{}

func (indexPair1) size() int                                { return 1 }
func (indexPair1) test(a, b Mem)                            { generateIndexPairTest(MOVB, CMPB, GP8, a, b) }
func (indexPair1) vpcmpeq(a, b, c VecVirtual)               { VPCMPEQB(a, b, c) }
func (indexPair1) vpmovmskb(_, a VecVirtual, _, b Register) { VPMOVMSKB(a, b) }

type indexPair2 struct{}

func (indexPair2) size() int                                { return 2 }
func (indexPair2) test(a, b Mem)                            { generateIndexPairTest(MOVW, CMPW, GP16, a, b) }
func (indexPair2) vpcmpeq(a, b, c VecVirtual)               { VPCMPEQW(a, b, c) }
func (indexPair2) vpmovmskb(_, a VecVirtual, _, b Register) { VPMOVMSKB(a, b) }

type indexPair4 struct{}

func (indexPair4) size() int                                { return 4 }
func (indexPair4) test(a, b Mem)                            { generateIndexPairTest(MOVL, CMPL, GP32, a, b) }
func (indexPair4) vpcmpeq(a, b, c VecVirtual)               { VPCMPEQD(a, b, c) }
func (indexPair4) vpmovmskb(_, a VecVirtual, _, b Register) { VPMOVMSKB(a, b) }

type indexPair8 struct{}

func (indexPair8) size() int                                { return 8 }
func (indexPair8) test(a, b Mem)                            { generateIndexPairTest(MOVQ, CMPQ, GP64, a, b) }
func (indexPair8) vpcmpeq(a, b, c VecVirtual)               { VPCMPEQQ(a, b, c) }
func (indexPair8) vpmovmskb(_, a VecVirtual, _, b Register) { VPMOVMSKB(a, b) }

type indexPair16 struct{}

func (indexPair16) size() int {
	return 16
}
func (indexPair16) test(a, b Mem) {
	r0, r1 := XMM(), XMM()
	MOVOU(a, r0)
	MOVOU(b, r1)
	mask := GP32()
	PCMPEQQ(r0, r1)
	PMOVMSKB(r1, mask)
	CMPL(mask, U32(0xFFFF))
}
func (indexPair16) vpcmpeq(a, b, c VecVirtual) {
	VPCMPEQQ(a, b, c)
}
func (indexPair16) vpmovmskb(tmp, src VecVirtual, _, dst Register) {
	// https://www.felixcloutier.com/x86/vpermq#vpermq--vex-256-encoded-version-
	//
	// Swap each quad word in the lower and upper half of the 32 bytes register,
	// then AND the src and tmp registers to zero each halves that were partial
	// equality; only fully equal 128 bits need to result in setting 1 bits in
	// the destination mask.
	const permutation = (1 << 0) | (0 << 2) | (3 << 4) | (2 << 6)
	VPERMQ(Imm(permutation), src, tmp)
	VPAND(src, tmp, tmp)
	VPMOVMSKB(tmp, dst)
}

type indexPair32 struct{}

func (indexPair32) size() int {
	return 32
}
func (indexPair32) test(a, b Mem) {
	r0, r1, r2, r3 := XMM(), XMM(), XMM(), XMM()
	MOVOU(a, r0)
	MOVOU(a.Offset(16), r1)
	MOVOU(b, r2)
	MOVOU(b.Offset(16), r3)
	mask0, mask1 := GP32(), GP32()
	PCMPEQQ(r0, r2)
	PCMPEQQ(r1, r3)
	PMOVMSKB(r2, mask0)
	PMOVMSKB(r3, mask1)
	ANDL(mask1, mask0)
	CMPL(mask0, U32(0xFFFF))
}
func (indexPair32) vpcmpeq(a, b, c VecVirtual) {
	VPCMPEQQ(a, b, c)
}
func (indexPair32) vpmovmskb(_, src VecVirtual, zero, dst Register) {
	VPMOVMSKB(src, dst)
	CMPL(dst, U32(0xFFFFFFFF))
	CMOVLNE(zero, dst)
}

func generateIndexPair(code indexPair) {
	size := code.size()
	TEXT(fmt.Sprintf("indexPair%d", size), NOSPLIT, "func(b []byte) int")

	p := Load(Param("b").Base(), GP64())
	n := Load(Param("b").Len(), GP64())

	base := GP64()
	MOVQ(p, base)

	CMPQ(n, Imm(0))
	JLE(LabelRef("fail"))
	SUBQ(Imm(uint64(size)), n)

	if _, ok := code.(indexPairAVX2); ok {
		JumpIfFeature("avx2", cpu.AVX2)
	}

	Label("tail")
	CMPQ(n, Imm(0))
	JE(LabelRef("fail"))

	Label("generic")
	code.test(Mem{Base: p}, (Mem{Base: p}).Offset(size))
	JE(LabelRef("done"))
	ADDQ(Imm(uint64(size)), p)
	SUBQ(Imm(uint64(size)), n)
	CMPQ(n, Imm(0))
	JA(LabelRef("generic"))

	index := p
	Label("fail")
	MOVQ(U64(math.MaxUint64), index)
	Store(index, ReturnIndex(0))
	RET()

	Label("done")
	// The delta between the base pointer and how far we advanced is the index of the pair.
	SUBQ(base, index)
	Store(index, ReturnIndex(0))
	RET()

	if avx, ok := code.(indexPairAVX2); ok {
		const avxChunk = 256
		const avxLanes = avxChunk / 32
		Label("avx2")
		CMPQ(n, U32(avxChunk+uint64(size)))
		JB(LabelRef(fmt.Sprintf("avx2_tail%d", avxChunk/2)))

		masks := make([]GPVirtual, avxLanes)
		for i := range masks {
			masks[i] = GP64()
			XORQ(masks[i], masks[i])
		}

		regA := make([]VecVirtual, avxLanes)
		regB := make([]VecVirtual, avxLanes)
		for i := range regA {
			regA[i] = YMM()
			regB[i] = YMM()
		}

		Label(fmt.Sprintf("avx2_loop%d", avxChunk))
		generateIndexPairAVX2(p, regA, regB, masks, avx)
		ADDQ(U32(avxChunk), p)
		SUBQ(U32(avxChunk), n)
		CMPQ(n, U32(avxChunk+uint64(size)))
		JAE(LabelRef(fmt.Sprintf("avx2_loop%d", avxChunk)))

		for chunk := avxChunk / 2; chunk >= 32; chunk /= 2 {
			Label(fmt.Sprintf("avx2_tail%d", chunk))
			CMPQ(n, Imm(uint64(chunk+size)))
			JB(LabelRef(fmt.Sprintf("avx2_tail%d", chunk/2)))
			lanes := chunk / 32
			generateIndexPairAVX2(p, regA[:lanes], regB[:lanes], masks[:lanes], avx)
			ADDQ(U32(uint64(chunk)), p)
			SUBQ(U32(uint64(chunk)), n)
		}

		Label("avx2_tail16")
		if size < 16 {
			CMPQ(n, Imm(uint64(16+size)))
			JB(LabelRef("avx2_tail"))
			generateIndexPairAVX2(p, []VecVirtual{XMM()}, []VecVirtual{XMM()}, masks[:1], avx)
			ADDQ(Imm(16), p)
			SUBQ(Imm(16), n)
		}

		Label("avx2_tail")
		VZEROUPPER()
		JMP(LabelRef("tail"))

		Label("avx2_done")
		VZEROUPPER()
		for i, mask := range masks {
			CMPQ(mask, Imm(0))
			JNE(LabelRef(fmt.Sprintf("avx2_done%d", i)))
		}

		for i, mask := range masks {
			Label(fmt.Sprintf("avx2_done%d", i))
			if i > 0 {
				ADDQ(U32(uint64(i*32)), p)
				SUBQ(U32(uint64(i*32)), n)
			}
			TZCNTQ(mask, mask)
			ADDQ(mask, p)
			SUBQ(mask, n)
			JMP(LabelRef("done"))
		}
	}
}

func generateIndexPairTest(mov func(Op, Op), cmp func(Op, Op), reg func() GPVirtual, a, b Mem) {
	r := reg()
	mov(a, r)
	cmp(r, b)
}

func generateIndexPairAVX2(p Register, regA, regB []VecVirtual, masks []GPVirtual, code indexPairAVX2) {
	size := code.size()
	moves := make(map[int]VecVirtual)

	spare := GP64()
	if size == 32 {
		// This is a bit of an implicit coupling to the 32 bytes specialication,
		// but it did not seem worth the extra complexity to have more
		// abstractions.
		//
		// The spare register is passed to vpmovmskb and must be initialized to
		// zero as it may be used to clear the mask register.
		XORQ(spare, spare)
	}

	for i, reg := range regA {
		VMOVDQU((Mem{Base: p}).Offset(i*32), reg)
		moves[i*32] = reg
	}

	for i, reg := range regB {
		// Skip loading from memory a second time if we already loaded the
		// offset in the previous loop. This optimization applies for items
		// of size 32.
		if moves[i*32+size] == nil {
			lo := moves[i*32+(size-16)]
			hi := moves[i*32+(size+16)]

			if lo != nil && hi != nil {
				// https://www.felixcloutier.com/x86/vperm2i128#vperm2i128
				//
				// The data was already loaded, but split across two registers.
				// We recompose it using a permutation of the upper and lower
				// halves of the registers holding the contiguous data.
				//
				// Note that in Go assembly the arguments are reversed;
				// SRC1 is `lo` and SRC2 is `hi`, but we pass them in the
				// reverse order.
				const permutation = (1 << 0) | (2 << 4)
				VPERM2I128(Imm(permutation), hi, lo, reg)
			} else {
				VMOVDQU((Mem{Base: p}).Offset(i*32+size), reg)
			}
		}
	}

	for i := range regA {
		// The load may have been elided if there was offset overlaps between
		// the two sources.
		if mov := moves[i*32+size]; mov != nil {
			code.vpcmpeq(regA[i], mov, regB[i])
		} else {
			code.vpcmpeq(regA[i], regB[i], regB[i])
		}
	}

	for i := range regB {
		code.vpmovmskb(regA[i], regB[i], spare.As32(), masks[i].As32())
	}

	combinedMask := spare
	if len(masks) == 1 {
		combinedMask = masks[0]
	} else {
		XORQ(combinedMask, combinedMask)
		for _, mask := range masks {
			ORQ(mask, combinedMask)
		}
	}

	CMPQ(combinedMask, Imm(0))
	JNE(LabelRef("avx2_done"))
}