1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
|
// +build ignore
package main
import (
"fmt"
"math/bits"
. "github.com/mmcloughlin/avo/build"
. "github.com/mmcloughlin/avo/operand"
. "github.com/mmcloughlin/avo/reg"
. "github.com/segmentio/asm/build/internal/asm"
. "github.com/segmentio/asm/build/internal/x86"
"github.com/segmentio/asm/cpu"
)
func init() {
ConstraintExpr("!purego")
}
func main() {
generateDedupe(new(dedupe1))
generateDedupe(new(dedupe2))
generateDedupe(new(dedupe4))
generateDedupe(new(dedupe8))
generateDedupe(new(dedupe16))
generateDedupe(new(dedupe32))
Generate()
}
type dedupe interface {
size() int
init(p, w GPVirtual)
copy(p, w GPVirtual)
}
type dedupeAVX2 interface {
dedupe
vec() VecVirtual
vsize() int
vlanes() int
vinit(p, w GPVirtual)
vcopy(src0, src1, dst VecVirtual, off GPVirtual)
}
type dedupe1 struct{}
func (*dedupe1) size() int { return 1 }
func (*dedupe1) init(p, w GPVirtual) { move(MOVB, GP8(), p, w) }
func (*dedupe1) copy(p, w GPVirtual) { generateDedupeX86(MOVB, CMPB, GP8, p, w, 1) }
type dedupe2 struct{}
func (*dedupe2) size() int { return 2 }
func (*dedupe2) init(p, w GPVirtual) { move(MOVW, GP16(), p, w) }
func (*dedupe2) copy(p, w GPVirtual) { generateDedupeX86(MOVW, CMPW, GP16, p, w, 2) }
type dedupe4 struct {
shuf GPVirtual
incr GPVirtual
}
func (*dedupe4) size() int { return 4 }
func (*dedupe4) init(p, w GPVirtual) { move(MOVL, GP32(), p, w) }
func (*dedupe4) copy(p, w GPVirtual) { generateDedupeX86(MOVL, CMPL, GP32, p, w, 4) }
func (d *dedupe4) vec() VecVirtual { return XMM() }
func (d *dedupe4) vsize() int { return 16 }
func (d *dedupe4) vlanes() int { return 8 }
func (d *dedupe4) vinit(p, w GPVirtual) {
move(MOVL, GP32(), p, w)
d.shuf = GP64()
LEAQ(
ConstShuffleMask32("dedupe4_shuffle_mask",
0, 1, 2, 3, // 0b0000
1, 2, 3, 0, // 0b0001
0, 2, 3, 1, // 0b0010
2, 3, 0, 1, // 0b0011
0, 1, 3, 2, // 0b0100
1, 3, 0, 2, // 0b0101
0, 3, 1, 2, // 0b0110
3, 0, 1, 2, // 0b0111
0, 1, 2, 3, // 0b1000
1, 2, 0, 3, // 0b1001
0, 3, 1, 2, // 0b1010
2, 0, 1, 3, // 0b1011
0, 1, 2, 3, // 0b1100
1, 0, 2, 3, // 0b1101
0, 1, 2, 3, // 0b1110
0, 1, 2, 3, // 0b1111
),
d.shuf,
)
d.incr = GP64()
LEAQ(
// A table indexing the number of bytes to advance the write pointer by,
// depending on how many 4 bytes items were equal.
ConstArray32("dedupe4_offset_array",
// 0b0000, 0b0001, 0b0010, 0b0011
16, 12, 12, 8,
// 0b0100, 0b0101, 0b0110, 0b0111
12, 8, 8, 4,
// 0b1000, 0b1001, 0b1010, 0b1011
12, 8, 8, 4,
// 0b1100, 0b1101, 0b1110, 0b1111
8, 4, 4, 0,
),
d.incr,
)
}
func (d *dedupe4) vcopy(src0, src1, dst VecVirtual, off GPVirtual) {
VPCMPEQD(src1, src0, src0)
VMOVMSKPS(src0, off.As32())
// 16 possible states:
// * 0b0000
// * 0b0001
// * 0b0010
// * 0b0011
// * ...
// * 0b1111
// We multiply the mask by 4 (left shift 2) to use the value as index into
// the shuffle mask table (128 bits) and offset array (32 bits).
SHLQ(Imm(2), off)
VPSHUFB(Mem{Base: d.shuf}.Idx(off, 4), src1, dst)
MOVL(Mem{Base: d.incr}.Idx(off, 1), off.As32())
}
type dedupe8 struct {
shuf GPVirtual
incr GPVirtual
}
func (*dedupe8) size() int { return 8 }
func (*dedupe8) init(p, w GPVirtual) { move(MOVQ, GP64(), p, w) }
func (*dedupe8) copy(p, w GPVirtual) { generateDedupeX86(MOVQ, CMPQ, GP64, p, w, 8) }
func (*dedupe8) vec() VecVirtual { return XMM() }
func (*dedupe8) vsize() int { return 16 }
func (*dedupe8) vlanes() int { return 8 }
func (d *dedupe8) vinit(p, w GPVirtual) {
move(MOVQ, GP64(), p, w)
d.shuf = GP64()
d.incr = GP64()
LEAQ(
ConstShuffleMask64("dedupe8_shuffle_mask",
// We use the interesting property that the first and second masks
// overlap on their respective upper and lower 64 bits to use a
// shuffle mask of 64 bits elements.
//
// This technique saves a shift instruction in the vcopy
// implementation which would otherwise be required to convert the
// bit mask values (0, 1, 2, 3) to indices into an array of 128 bits
// elements (since only 1, 2, 4, and 8 scales are supported).
//
// This is the layout:
// * (0b00 x 8)[128:0] => [0, 1]; copy all 128 bits
// * (0b01 x 8)[128:0] => [1, 0]; copy the upper 64 bits (lower 64 bits are discarded)
// * (0b10 x 8)[128:0] => [0, 0]; copy the lower 64 bits (upper 64 bits are discarded)
// * (0b11 x 8)[128:0] => [0, 0]; all 128 bits are discarded
0, 1, 0, 0, 0,
),
d.shuf,
)
LEAQ(
ConstArray64("dedupe8_offset_array", 16, 8, 8, 0),
d.incr,
)
}
func (d *dedupe8) vcopy(src0, src1, dst VecVirtual, off GPVirtual) {
VPCMPEQQ(src1, src0, src0)
VMOVMSKPD(src0, off.As32())
VPSHUFB(Mem{Base: d.shuf}.Idx(off, 8), src1, dst)
MOVQ(Mem{Base: d.incr}.Idx(off, 8), off)
}
type dedupe16 struct {
nop GPVirtual
inc GPVirtual
}
func (*dedupe16) size() int { return 16 }
func (*dedupe16) init(p, w GPVirtual) { move(MOVOU, XMM(), p, w) }
func (*dedupe16) copy(p, w GPVirtual) {
next := GP64()
MOVQ(w, next)
ADDQ(Imm(16), next)
xmm0, xmm1 := XMM(), XMM()
MOVOU(Mem{Base: p}, xmm0)
MOVOU(Mem{Base: p}.Offset(16), xmm1)
MOVOU(xmm1, Mem{Base: w})
mask := GP32()
PCMPEQQ(xmm0, xmm1)
PMOVMSKB(xmm1, mask)
CMPL(mask, U32(0xFFFF))
CMOVQNE(next, w)
}
func (*dedupe16) vec() VecVirtual { return XMM() }
func (*dedupe16) vsize() int { return 16 }
func (*dedupe16) vlanes() int { return 8 }
func (d *dedupe16) vinit(p, w GPVirtual) {
move(VMOVDQU, XMM(), p, w)
d.nop = GP64()
d.inc = GP64()
XORQ(d.nop, d.nop)
MOVQ(U64(16), d.inc)
}
func (d *dedupe16) vcopy(src0, src1, dst VecVirtual, off GPVirtual) {
if src1 != dst {
VMOVDQA(src1, dst)
}
VPCMPEQQ(src1, src0, src0)
// This gives a bitmask with these possible values:
// * 0b00
// * 0b01
// * 0b10
// * 0b11
// We only care about the last case, which indicates that both 64 bits lanes
// of the XMM register were equal.
VMOVMSKPD(src0, off.As32())
CMPQ(off, Imm(3))
CMOVQEQ(d.nop, off)
CMOVQNE(d.inc, off)
}
type dedupe32 struct {
nop GPVirtual
inc GPVirtual
}
func (*dedupe32) size() int { return 32 }
func (*dedupe32) init(p, w GPVirtual) {
lo, hi := XMM(), XMM()
MOVOU(Mem{Base: p}, lo)
MOVOU(Mem{Base: p}.Offset(16), hi)
MOVOU(lo, Mem{Base: w})
MOVOU(hi, Mem{Base: w}.Offset(16))
}
func (*dedupe32) copy(p, w GPVirtual) {
next := GP64()
MOVQ(w, next)
ADDQ(Imm(32), next)
loP, hiP := XMM(), XMM()
loQ, hiQ := XMM(), XMM()
MOVOU(Mem{Base: p}, loP)
MOVOU(Mem{Base: p}.Offset(16), hiP)
MOVOU(Mem{Base: p}.Offset(32), loQ)
MOVOU(Mem{Base: p}.Offset(48), hiQ)
MOVOU(loQ, Mem{Base: w})
MOVOU(hiQ, Mem{Base: w}.Offset(16))
mask0, mask1 := GP32(), GP32()
PCMPEQQ(loP, loQ)
PCMPEQQ(hiP, hiQ)
PMOVMSKB(loQ, mask0)
PMOVMSKB(hiQ, mask1)
ANDL(mask1, mask0)
CMPL(mask0, U32(0xFFFF))
CMOVQNE(next, w)
}
func (*dedupe32) vec() VecVirtual { return YMM() }
func (*dedupe32) vsize() int { return 32 }
func (*dedupe32) vlanes() int { return 8 }
func (d *dedupe32) vinit(p, w GPVirtual) {
move(VMOVDQU, YMM(), p, w)
d.nop = GP64()
d.inc = GP64()
XORQ(d.nop, d.nop)
MOVQ(U64(32), d.inc)
}
func (d *dedupe32) vcopy(src0, src1, dst VecVirtual, off GPVirtual) {
if src1 != dst {
VMOVDQA(src1, dst)
}
VPCMPEQQ(src1, src0, src0)
// This gives a bitmask with these possible values:
// * 0b0000
// * 0b0001
// * ...
// * 0b1111
//
// We only care about the last case because it indicates that the full 32
// bytes are equal.
//
// We want to divide by 15, which will either produce a result of 0 or 1.
// Rather than dividing, we add 1 and shift right by 4.
VMOVMSKPD(src0, off.As32())
CMPQ(off, Imm(15))
CMOVQEQ(d.nop, off)
CMOVQNE(d.inc, off)
}
func generateDedupe(dedupe dedupe) {
size := dedupe.size()
TEXT(fmt.Sprintf("dedupe%d", size), NOSPLIT, "func(dst, src []byte) int")
n := Load(Param("src").Len(), GP64())
CMPQ(n, Imm(0))
JE(LabelRef("short"))
dst := Load(Param("dst").Base(), GP64())
src := Load(Param("src").Base(), GP64())
// `p` is the read pointer that will be advanced through the input array
// testing for equal pairs.
//
// `w` points to the position in the output buffer where the next item
// is to be written.
p := GP64()
w := GP64()
MOVQ(src, p)
MOVQ(dst, w)
SUBQ(Imm(uint64(size)), n)
if avx, ok := dedupe.(dedupeAVX2); ok {
CMPQ(n, Imm(uint64(avx.vsize())))
JL(LabelRef("init"))
JumpIfFeature("avx2", cpu.AVX2)
}
Label("init")
dedupe.init(p, w)
ADDQ(Imm(uint64(size)), w)
Label("tail")
CMPQ(n, Imm(0))
JE(LabelRef("done"))
Label("generic")
dedupe.copy(p, w)
ADDQ(Imm(uint64(size)), p)
SUBQ(Imm(uint64(size)), n)
CMPQ(n, Imm(0))
JG(LabelRef("generic"))
Label("done")
SUBQ(dst, w)
Store(w, ReturnIndex(0))
RET()
Label("short")
Store(n, ReturnIndex(0))
RET()
if avx, ok := dedupe.(dedupeAVX2); ok {
avxLanes := avx.vlanes()
avxChunk := avx.vsize() * avxLanes
Label("avx2")
src := make([]VecVirtual, avxLanes)
dst := make([]VecVirtual, avxLanes)
off := make([]GPVirtual, avxLanes)
for i := range src {
src[i] = avx.vec()
dst[i] = avx.vec()
off[i] = GP64()
}
avx.vinit(p, w)
ADDQ(Imm(uint64(size)), w)
// This bit of magic aligns the tail chunk size on the first power of
// two smaller than the chunk size used in the loop.
//
// This is useful when the number of lanes in not a power of two.
tailChunk := 1 << (63 - bits.LeadingZeros(uint(avxChunk)))
if tailChunk == avxChunk {
tailChunk /= 2
}
CMPQ(n, U32(avxChunk))
if tailChunk >= avx.vsize() {
JL(LabelRef(fmt.Sprintf("avx2_tail%d", tailChunk)))
} else {
JL(LabelRef("avx2_tail"))
}
Label(fmt.Sprintf("avx2_loop%d", avxChunk))
generateDedupeAVX2(p, w, src, dst, off, avx)
ADDQ(U32(uint64(avxChunk)), p)
SUBQ(U32(uint64(avxChunk)), n)
CMPQ(n, U32(avxChunk))
JGE(LabelRef(fmt.Sprintf("avx2_loop%d", avxChunk)))
for chunk := tailChunk; chunk >= avx.vsize(); chunk /= 2 {
Label(fmt.Sprintf("avx2_tail%d", chunk))
CMPQ(n, Imm(uint64(chunk)))
if next := chunk / 2; next >= avx.vsize() {
JL(LabelRef(fmt.Sprintf("avx2_tail%d", chunk/2)))
} else {
JL(LabelRef("avx2_tail"))
}
lanes := chunk / avx.vsize()
generateDedupeAVX2(p, w, src[:lanes], dst[:lanes], off[:lanes], avx)
ADDQ(Imm(uint64(chunk)), p)
SUBQ(Imm(uint64(chunk)), n)
}
Label("avx2_tail")
VZEROUPPER()
JMP(LabelRef("tail"))
}
}
func generateDedupeX86(mov func(Op, Op), cmp func(Op, Op), reg func() GPVirtual, p, w GPVirtual, size int) {
next := GP64()
MOVQ(w, next)
ADDQ(Imm(uint64(size)), next)
r0, r1 := reg(), reg()
mov(Mem{Base: p}, r0)
mov(Mem{Base: p}.Offset(size), r1)
mov(r1, Mem{Base: w})
cmp(r0, r1)
CMOVQNE(next, w)
}
func generateDedupeAVX2(p, w GPVirtual, src, dst []VecVirtual, off []GPVirtual, dedupe dedupeAVX2) {
size := dedupe.size()
step := dedupe.vsize()
moves := make(map[int]VecVirtual)
for i := range src {
VMOVDQU(Mem{Base: p}.Offset(i*step), src[i])
moves[i*step] = src[i]
}
reg := make([]VecVirtual, len(src))
for i := range dst {
// Elide moves from memory if possible by reusing registers that
// already contain the required data chunk.
//
// Care must be given in the implementations of AVX2 specializations
// not to write to the second source, as it may unexpectedly mutate
// the src0 or dst registers.
if prev := moves[i*step+size]; prev != nil {
reg[i] = prev
} else {
reg[i] = dst[i]
VMOVDQU(Mem{Base: p}.Offset(i*step+size), dst[i])
}
}
for i := range src {
dedupe.vcopy(src[i], reg[i], dst[i], off[i])
if i > 0 {
// Compute the cumulative offsets so we can use indexes relative to the
// write pointer, which allows the CPU to pipeline the writes to memory.
//
// There are still strong data dependencies between these instructions,
// but I'm not sure there is a great alternative. Moving the values to a
// vector register and using SIMD seems like a lost of heavy lifting for
// the limited number of registers we have.
ADDQ(off[i-1], off[i])
}
}
for i := range dst {
if i == 0 {
VMOVDQU(dst[i], Mem{Base: w})
} else {
VMOVDQU(dst[i], Mem{Base: w}.Idx(off[i-1], 1))
}
}
ADDQ(off[len(off)-1], w)
}
func move(mov func(Op, Op), tmp Register, src, dst GPVirtual) {
mov(Mem{Base: src}, tmp)
mov(tmp, Mem{Base: dst})
}
|