1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
|
package kafka
import (
"hash"
"hash/crc32"
"hash/fnv"
"math/rand"
"sort"
"sync"
)
// The Balancer interface provides an abstraction of the message distribution
// logic used by Writer instances to route messages to the partitions available
// on a kafka cluster.
//
// Balancers must be safe to use concurrently from multiple goroutines.
type Balancer interface {
// Balance receives a message and a set of available partitions and
// returns the partition number that the message should be routed to.
//
// An application should refrain from using a balancer to manage multiple
// sets of partitions (from different topics for examples), use one balancer
// instance for each partition set, so the balancer can detect when the
// partitions change and assume that the kafka topic has been rebalanced.
Balance(msg Message, partitions ...int) (partition int)
}
// BalancerFunc is an implementation of the Balancer interface that makes it
// possible to use regular functions to distribute messages across partitions.
type BalancerFunc func(Message, ...int) int
// Balance calls f, satisfies the Balancer interface.
func (f BalancerFunc) Balance(msg Message, partitions ...int) int {
return f(msg, partitions...)
}
// RoundRobin is an Balancer implementation that equally distributes messages
// across all available partitions. It can take an optional chunk size to send
// ChunkSize messages to the same partition before moving to the next partition.
// This can be used to improve batch sizes.
type RoundRobin struct {
ChunkSize int
// Use a 32 bits integer so RoundRobin values don't need to be aligned to
// apply increments.
counter uint32
mutex sync.Mutex
}
// Balance satisfies the Balancer interface.
func (rr *RoundRobin) Balance(msg Message, partitions ...int) int {
return rr.balance(partitions)
}
func (rr *RoundRobin) balance(partitions []int) int {
rr.mutex.Lock()
defer rr.mutex.Unlock()
if rr.ChunkSize < 1 {
rr.ChunkSize = 1
}
length := len(partitions)
counterNow := rr.counter
offset := int(counterNow / uint32(rr.ChunkSize))
rr.counter++
return partitions[offset%length]
}
// LeastBytes is a Balancer implementation that routes messages to the partition
// that has received the least amount of data.
//
// Note that no coordination is done between multiple producers, having good
// balancing relies on the fact that each producer using a LeastBytes balancer
// should produce well balanced messages.
type LeastBytes struct {
mutex sync.Mutex
counters []leastBytesCounter
}
type leastBytesCounter struct {
partition int
bytes uint64
}
// Balance satisfies the Balancer interface.
func (lb *LeastBytes) Balance(msg Message, partitions ...int) int {
lb.mutex.Lock()
defer lb.mutex.Unlock()
// partitions change
if len(partitions) != len(lb.counters) {
lb.counters = lb.makeCounters(partitions...)
}
minBytes := lb.counters[0].bytes
minIndex := 0
for i, c := range lb.counters[1:] {
if c.bytes < minBytes {
minIndex = i + 1
minBytes = c.bytes
}
}
c := &lb.counters[minIndex]
c.bytes += uint64(len(msg.Key)) + uint64(len(msg.Value))
return c.partition
}
func (lb *LeastBytes) makeCounters(partitions ...int) (counters []leastBytesCounter) {
counters = make([]leastBytesCounter, len(partitions))
for i, p := range partitions {
counters[i].partition = p
}
sort.Slice(counters, func(i int, j int) bool {
return counters[i].partition < counters[j].partition
})
return
}
var (
fnv1aPool = &sync.Pool{
New: func() interface{} {
return fnv.New32a()
},
}
)
// Hash is a Balancer that uses the provided hash function to determine which
// partition to route messages to. This ensures that messages with the same key
// are routed to the same partition.
//
// The logic to calculate the partition is:
//
// hasher.Sum32() % len(partitions) => partition
//
// By default, Hash uses the FNV-1a algorithm. This is the same algorithm used
// by the Sarama Producer and ensures that messages produced by kafka-go will
// be delivered to the same topics that the Sarama producer would be delivered to.
type Hash struct {
rr RoundRobin
Hasher hash.Hash32
// lock protects Hasher while calculating the hash code. It is assumed that
// the Hasher field is read-only once the Balancer is created, so as a
// performance optimization, reads of the field are not protected.
lock sync.Mutex
}
func (h *Hash) Balance(msg Message, partitions ...int) int {
if msg.Key == nil {
return h.rr.Balance(msg, partitions...)
}
hasher := h.Hasher
if hasher != nil {
h.lock.Lock()
defer h.lock.Unlock()
} else {
hasher = fnv1aPool.Get().(hash.Hash32)
defer fnv1aPool.Put(hasher)
}
hasher.Reset()
if _, err := hasher.Write(msg.Key); err != nil {
panic(err)
}
// uses same algorithm that Sarama's hashPartitioner uses
// note the type conversions here. if the uint32 hash code is not cast to
// an int32, we do not get the same result as sarama.
partition := int32(hasher.Sum32()) % int32(len(partitions))
if partition < 0 {
partition = -partition
}
return int(partition)
}
// ReferenceHash is a Balancer that uses the provided hash function to determine which
// partition to route messages to. This ensures that messages with the same key
// are routed to the same partition.
//
// The logic to calculate the partition is:
//
// (int32(hasher.Sum32()) & 0x7fffffff) % len(partitions) => partition
//
// By default, ReferenceHash uses the FNV-1a algorithm. This is the same algorithm as
// the Sarama NewReferenceHashPartitioner and ensures that messages produced by kafka-go will
// be delivered to the same topics that the Sarama producer would be delivered to.
type ReferenceHash struct {
rr randomBalancer
Hasher hash.Hash32
// lock protects Hasher while calculating the hash code. It is assumed that
// the Hasher field is read-only once the Balancer is created, so as a
// performance optimization, reads of the field are not protected.
lock sync.Mutex
}
func (h *ReferenceHash) Balance(msg Message, partitions ...int) int {
if msg.Key == nil {
return h.rr.Balance(msg, partitions...)
}
hasher := h.Hasher
if hasher != nil {
h.lock.Lock()
defer h.lock.Unlock()
} else {
hasher = fnv1aPool.Get().(hash.Hash32)
defer fnv1aPool.Put(hasher)
}
hasher.Reset()
if _, err := hasher.Write(msg.Key); err != nil {
panic(err)
}
// uses the same algorithm as the Sarama's referenceHashPartitioner.
// note the type conversions here. if the uint32 hash code is not cast to
// an int32, we do not get the same result as sarama.
partition := (int32(hasher.Sum32()) & 0x7fffffff) % int32(len(partitions))
return int(partition)
}
type randomBalancer struct {
mock int // mocked return value, used for testing
}
func (b randomBalancer) Balance(msg Message, partitions ...int) (partition int) {
if b.mock != 0 {
return b.mock
}
return partitions[rand.Int()%len(partitions)]
}
// CRC32Balancer is a Balancer that uses the CRC32 hash function to determine
// which partition to route messages to. This ensures that messages with the
// same key are routed to the same partition. This balancer is compatible with
// the built-in hash partitioners in librdkafka and the language bindings that
// are built on top of it, including the
// github.com/confluentinc/confluent-kafka-go Go package.
//
// With the Consistent field false (default), this partitioner is equivalent to
// the "consistent_random" setting in librdkafka. When Consistent is true, this
// partitioner is equivalent to the "consistent" setting. The latter will hash
// empty or nil keys into the same partition.
//
// Unless you are absolutely certain that all your messages will have keys, it's
// best to leave the Consistent flag off. Otherwise, you run the risk of
// creating a very hot partition.
type CRC32Balancer struct {
Consistent bool
random randomBalancer
}
func (b CRC32Balancer) Balance(msg Message, partitions ...int) (partition int) {
// NOTE: the crc32 balancers in librdkafka don't differentiate between nil
// and empty keys. both cases are treated as unset.
if len(msg.Key) == 0 && !b.Consistent {
return b.random.Balance(msg, partitions...)
}
idx := crc32.ChecksumIEEE(msg.Key) % uint32(len(partitions))
return partitions[idx]
}
// Murmur2Balancer is a Balancer that uses the Murmur2 hash function to
// determine which partition to route messages to. This ensures that messages
// with the same key are routed to the same partition. This balancer is
// compatible with the partitioner used by the Java library and by librdkafka's
// "murmur2" and "murmur2_random" partitioners.
//
// With the Consistent field false (default), this partitioner is equivalent to
// the "murmur2_random" setting in librdkafka. When Consistent is true, this
// partitioner is equivalent to the "murmur2" setting. The latter will hash
// nil keys into the same partition. Empty, non-nil keys are always hashed to
// the same partition regardless of configuration.
//
// Unless you are absolutely certain that all your messages will have keys, it's
// best to leave the Consistent flag off. Otherwise, you run the risk of
// creating a very hot partition.
//
// Note that the librdkafka documentation states that the "murmur2_random" is
// functionally equivalent to the default Java partitioner. That's because the
// Java partitioner will use a round robin balancer instead of random on nil
// keys. We choose librdkafka's implementation because it arguably has a larger
// install base.
type Murmur2Balancer struct {
Consistent bool
random randomBalancer
}
func (b Murmur2Balancer) Balance(msg Message, partitions ...int) (partition int) {
// NOTE: the murmur2 balancers in java and librdkafka treat a nil key as
// non-existent while treating an empty slice as a defined value.
if msg.Key == nil && !b.Consistent {
return b.random.Balance(msg, partitions...)
}
idx := (murmur2(msg.Key) & 0x7fffffff) % uint32(len(partitions))
return partitions[idx]
}
// Go port of the Java library's murmur2 function.
// https://github.com/apache/kafka/blob/1.0/clients/src/main/java/org/apache/kafka/common/utils/Utils.java#L353
func murmur2(data []byte) uint32 {
length := len(data)
const (
seed uint32 = 0x9747b28c
// 'm' and 'r' are mixing constants generated offline.
// They're not really 'magic', they just happen to work well.
m = 0x5bd1e995
r = 24
)
// Initialize the hash to a random value
h := seed ^ uint32(length)
length4 := length / 4
for i := 0; i < length4; i++ {
i4 := i * 4
k := (uint32(data[i4+0]) & 0xff) + ((uint32(data[i4+1]) & 0xff) << 8) + ((uint32(data[i4+2]) & 0xff) << 16) + ((uint32(data[i4+3]) & 0xff) << 24)
k *= m
k ^= k >> r
k *= m
h *= m
h ^= k
}
// Handle the last few bytes of the input array
extra := length % 4
if extra >= 3 {
h ^= (uint32(data[(length & ^3)+2]) & 0xff) << 16
}
if extra >= 2 {
h ^= (uint32(data[(length & ^3)+1]) & 0xff) << 8
}
if extra >= 1 {
h ^= uint32(data[length & ^3]) & 0xff
h *= m
}
h ^= h >> 13
h *= m
h ^= h >> 15
return h
}
|