1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
|
package kafka
import (
"bufio"
"errors"
"io"
"sync"
"time"
)
// A Batch is an iterator over a sequence of messages fetched from a kafka
// server.
//
// Batches are created by calling (*Conn).ReadBatch. They hold a internal lock
// on the connection, which is released when the batch is closed. Failing to
// call a batch's Close method will likely result in a dead-lock when trying to
// use the connection.
//
// Batches are safe to use concurrently from multiple goroutines.
type Batch struct {
mutex sync.Mutex
conn *Conn
lock *sync.Mutex
msgs *messageSetReader
deadline time.Time
throttle time.Duration
topic string
partition int
offset int64
highWaterMark int64
err error
// The last offset in the batch.
//
// We use lastOffset to skip offsets that have been compacted away.
//
// We store lastOffset because we get lastOffset when we read a new message
// but only try to handle compaction when we receive an EOF. However, when
// we get an EOF we do not get the lastOffset. So there is a mismatch
// between when we receive it and need to use it.
lastOffset int64
}
// Throttle gives the throttling duration applied by the kafka server on the
// connection.
func (batch *Batch) Throttle() time.Duration {
return batch.throttle
}
// HighWaterMark returns the current highest watermark in a partition.
func (batch *Batch) HighWaterMark() int64 {
return batch.highWaterMark
}
// Partition returns the batch partition.
func (batch *Batch) Partition() int {
return batch.partition
}
// Offset returns the offset of the next message in the batch.
func (batch *Batch) Offset() int64 {
batch.mutex.Lock()
offset := batch.offset
batch.mutex.Unlock()
return offset
}
// Close closes the batch, releasing the connection lock and returning an error
// if reading the batch failed for any reason.
func (batch *Batch) Close() error {
batch.mutex.Lock()
err := batch.close()
batch.mutex.Unlock()
return err
}
func (batch *Batch) close() (err error) {
conn := batch.conn
lock := batch.lock
batch.conn = nil
batch.lock = nil
if batch.msgs != nil {
batch.msgs.discard()
}
if batch.msgs != nil && batch.msgs.decompressed != nil {
releaseBuffer(batch.msgs.decompressed)
batch.msgs.decompressed = nil
}
if err = batch.err; errors.Is(batch.err, io.EOF) {
err = nil
}
if conn != nil {
conn.rdeadline.unsetConnReadDeadline()
conn.mutex.Lock()
conn.offset = batch.offset
conn.mutex.Unlock()
if err != nil {
var kafkaError Error
if !errors.As(err, &kafkaError) && !errors.Is(err, io.ErrShortBuffer) {
conn.Close()
}
}
}
if lock != nil {
lock.Unlock()
}
return
}
// Err returns a non-nil error if the batch is broken. This is the same error
// that would be returned by Read, ReadMessage or Close (except in the case of
// io.EOF which is never returned by Close).
//
// This method is useful when building retry mechanisms for (*Conn).ReadBatch,
// the program can check whether the batch carried a error before attempting to
// read the first message.
//
// Note that checking errors on a batch is optional, calling Read or ReadMessage
// is always valid and can be used to either read a message or an error in cases
// where that's convenient.
func (batch *Batch) Err() error { return batch.err }
// Read reads the value of the next message from the batch into b, returning the
// number of bytes read, or an error if the next message couldn't be read.
//
// If an error is returned the batch cannot be used anymore and calling Read
// again will keep returning that error. All errors except io.EOF (indicating
// that the program consumed all messages from the batch) are also returned by
// Close.
//
// The method fails with io.ErrShortBuffer if the buffer passed as argument is
// too small to hold the message value.
func (batch *Batch) Read(b []byte) (int, error) {
n := 0
batch.mutex.Lock()
offset := batch.offset
_, _, _, err := batch.readMessage(
func(r *bufio.Reader, size int, nbytes int) (int, error) {
if nbytes < 0 {
return size, nil
}
return discardN(r, size, nbytes)
},
func(r *bufio.Reader, size int, nbytes int) (int, error) {
if nbytes < 0 {
return size, nil
}
// make sure there are enough bytes for the message value. return
// errShortRead if the message is truncated.
if nbytes > size {
return size, errShortRead
}
n = nbytes // return value
if nbytes > cap(b) {
nbytes = cap(b)
}
if nbytes > len(b) {
b = b[:nbytes]
}
nbytes, err := io.ReadFull(r, b[:nbytes])
if err != nil {
return size - nbytes, err
}
return discardN(r, size-nbytes, n-nbytes)
},
)
if err == nil && n > len(b) {
n, err = len(b), io.ErrShortBuffer
batch.err = io.ErrShortBuffer
batch.offset = offset // rollback
}
batch.mutex.Unlock()
return n, err
}
// ReadMessage reads and return the next message from the batch.
//
// Because this method allocate memory buffers for the message key and value
// it is less memory-efficient than Read, but has the advantage of never
// failing with io.ErrShortBuffer.
func (batch *Batch) ReadMessage() (Message, error) {
msg := Message{}
batch.mutex.Lock()
var offset, timestamp int64
var headers []Header
var err error
offset, timestamp, headers, err = batch.readMessage(
func(r *bufio.Reader, size int, nbytes int) (remain int, err error) {
msg.Key, remain, err = readNewBytes(r, size, nbytes)
return
},
func(r *bufio.Reader, size int, nbytes int) (remain int, err error) {
msg.Value, remain, err = readNewBytes(r, size, nbytes)
return
},
)
// A batch may start before the requested offset so skip messages
// until the requested offset is reached.
for batch.conn != nil && offset < batch.conn.offset {
if err != nil {
break
}
offset, timestamp, headers, err = batch.readMessage(
func(r *bufio.Reader, size int, nbytes int) (remain int, err error) {
msg.Key, remain, err = readNewBytes(r, size, nbytes)
return
},
func(r *bufio.Reader, size int, nbytes int) (remain int, err error) {
msg.Value, remain, err = readNewBytes(r, size, nbytes)
return
},
)
}
batch.mutex.Unlock()
msg.Topic = batch.topic
msg.Partition = batch.partition
msg.Offset = offset
msg.HighWaterMark = batch.highWaterMark
msg.Time = makeTime(timestamp)
msg.Headers = headers
return msg, err
}
func (batch *Batch) readMessage(
key func(*bufio.Reader, int, int) (int, error),
val func(*bufio.Reader, int, int) (int, error),
) (offset int64, timestamp int64, headers []Header, err error) {
if err = batch.err; err != nil {
return
}
var lastOffset int64
offset, lastOffset, timestamp, headers, err = batch.msgs.readMessage(batch.offset, key, val)
switch {
case err == nil:
batch.offset = offset + 1
batch.lastOffset = lastOffset
case errors.Is(err, errShortRead):
// As an "optimization" kafka truncates the returned response after
// producing MaxBytes, which could then cause the code to return
// errShortRead.
err = batch.msgs.discard()
switch {
case err != nil:
// Since io.EOF is used by the batch to indicate that there is are
// no more messages to consume, it is crucial that any io.EOF errors
// on the underlying connection are repackaged. Otherwise, the
// caller can't tell the difference between a batch that was fully
// consumed or a batch whose connection is in an error state.
batch.err = dontExpectEOF(err)
case batch.msgs.remaining() == 0:
// Because we use the adjusted deadline we could end up returning
// before the actual deadline occurred. This is necessary otherwise
// timing out the connection for real could end up leaving it in an
// unpredictable state, which would require closing it.
// This design decision was made to maximize the chances of keeping
// the connection open, the trade off being to lose precision on the
// read deadline management.
err = checkTimeoutErr(batch.deadline)
batch.err = err
// Checks the following:
// - `batch.err` for a "success" from the previous timeout check
// - `batch.msgs.lengthRemain` to ensure that this EOF is not due
// to MaxBytes truncation
// - `batch.lastOffset` to ensure that the message format contains
// `lastOffset`
if errors.Is(batch.err, io.EOF) && batch.msgs.lengthRemain == 0 && batch.lastOffset != -1 {
// Log compaction can create batches that end with compacted
// records so the normal strategy that increments the "next"
// offset as records are read doesn't work as the compacted
// records are "missing" and never get "read".
//
// In order to reliably reach the next non-compacted offset we
// jump past the saved lastOffset.
batch.offset = batch.lastOffset + 1
}
}
default:
// Since io.EOF is used by the batch to indicate that there is are
// no more messages to consume, it is crucial that any io.EOF errors
// on the underlying connection are repackaged. Otherwise, the
// caller can't tell the difference between a batch that was fully
// consumed or a batch whose connection is in an error state.
batch.err = dontExpectEOF(err)
}
return
}
func checkTimeoutErr(deadline time.Time) (err error) {
if !deadline.IsZero() && time.Now().After(deadline) {
err = RequestTimedOut
} else {
err = io.EOF
}
return
}
|