1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
|
package kafka
import (
"sort"
)
// GroupMember describes a single participant in a consumer group.
type GroupMember struct {
// ID is the unique ID for this member as taken from the JoinGroup response.
ID string
// Topics is a list of topics that this member is consuming.
Topics []string
// UserData contains any information that the GroupBalancer sent to the
// consumer group coordinator.
UserData []byte
}
// GroupMemberAssignments holds MemberID => topic => partitions.
type GroupMemberAssignments map[string]map[string][]int
// GroupBalancer encapsulates the client side rebalancing logic.
type GroupBalancer interface {
// ProtocolName of the GroupBalancer
ProtocolName() string
// UserData provides the GroupBalancer an opportunity to embed custom
// UserData into the metadata.
//
// Will be used by JoinGroup to begin the consumer group handshake.
//
// See https://cwiki.apache.org/confluence/display/KAFKA/A+Guide+To+The+Kafka+Protocol#AGuideToTheKafkaProtocol-JoinGroupRequest
UserData() ([]byte, error)
// DefineMemberships returns which members will be consuming
// which topic partitions
AssignGroups(members []GroupMember, partitions []Partition) GroupMemberAssignments
}
// RangeGroupBalancer groups consumers by partition
//
// Example: 5 partitions, 2 consumers
// C0: [0, 1, 2]
// C1: [3, 4]
//
// Example: 6 partitions, 3 consumers
// C0: [0, 1]
// C1: [2, 3]
// C2: [4, 5]
//
type RangeGroupBalancer struct{}
func (r RangeGroupBalancer) ProtocolName() string {
return "range"
}
func (r RangeGroupBalancer) UserData() ([]byte, error) {
return nil, nil
}
func (r RangeGroupBalancer) AssignGroups(members []GroupMember, topicPartitions []Partition) GroupMemberAssignments {
groupAssignments := GroupMemberAssignments{}
membersByTopic := findMembersByTopic(members)
for topic, members := range membersByTopic {
partitions := findPartitions(topic, topicPartitions)
partitionCount := len(partitions)
memberCount := len(members)
for memberIndex, member := range members {
assignmentsByTopic, ok := groupAssignments[member.ID]
if !ok {
assignmentsByTopic = map[string][]int{}
groupAssignments[member.ID] = assignmentsByTopic
}
minIndex := memberIndex * partitionCount / memberCount
maxIndex := (memberIndex + 1) * partitionCount / memberCount
for partitionIndex, partition := range partitions {
if partitionIndex >= minIndex && partitionIndex < maxIndex {
assignmentsByTopic[topic] = append(assignmentsByTopic[topic], partition)
}
}
}
}
return groupAssignments
}
// RoundrobinGroupBalancer divides partitions evenly among consumers
//
// Example: 5 partitions, 2 consumers
// C0: [0, 2, 4]
// C1: [1, 3]
//
// Example: 6 partitions, 3 consumers
// C0: [0, 3]
// C1: [1, 4]
// C2: [2, 5]
//
type RoundRobinGroupBalancer struct{}
func (r RoundRobinGroupBalancer) ProtocolName() string {
return "roundrobin"
}
func (r RoundRobinGroupBalancer) UserData() ([]byte, error) {
return nil, nil
}
func (r RoundRobinGroupBalancer) AssignGroups(members []GroupMember, topicPartitions []Partition) GroupMemberAssignments {
groupAssignments := GroupMemberAssignments{}
membersByTopic := findMembersByTopic(members)
for topic, members := range membersByTopic {
partitionIDs := findPartitions(topic, topicPartitions)
memberCount := len(members)
for memberIndex, member := range members {
assignmentsByTopic, ok := groupAssignments[member.ID]
if !ok {
assignmentsByTopic = map[string][]int{}
groupAssignments[member.ID] = assignmentsByTopic
}
for partitionIndex, partition := range partitionIDs {
if (partitionIndex % memberCount) == memberIndex {
assignmentsByTopic[topic] = append(assignmentsByTopic[topic], partition)
}
}
}
}
return groupAssignments
}
// RackAffinityGroupBalancer makes a best effort to pair up consumers with
// partitions whose leader is in the same rack. This strategy can have
// performance benefits by minimizing round trip latency between the consumer
// and the broker. In environments where network traffic across racks incurs
// charges (such as cross AZ data transfer in AWS), this strategy is also a cost
// optimization measure because it keeps network traffic within the local rack
// where possible.
//
// The primary objective is to spread partitions evenly across consumers with a
// secondary focus on maximizing the number of partitions where the leader and
// the consumer are in the same rack. For best affinity, it's recommended to
// have a balanced spread of consumers and partition leaders across racks.
//
// This balancer requires Kafka version 0.10.0.0+ or later. Earlier versions do
// not return the brokers' racks in the metadata request.
type RackAffinityGroupBalancer struct {
// Rack is the name of the rack where this consumer is running. It will be
// communicated to the consumer group leader via the UserData so that
// assignments can be made with affinity to the partition leader.
Rack string
}
func (r RackAffinityGroupBalancer) ProtocolName() string {
return "rack-affinity"
}
func (r RackAffinityGroupBalancer) AssignGroups(members []GroupMember, partitions []Partition) GroupMemberAssignments {
membersByTopic := make(map[string][]GroupMember)
for _, m := range members {
for _, t := range m.Topics {
membersByTopic[t] = append(membersByTopic[t], m)
}
}
partitionsByTopic := make(map[string][]Partition)
for _, p := range partitions {
partitionsByTopic[p.Topic] = append(partitionsByTopic[p.Topic], p)
}
assignments := GroupMemberAssignments{}
for topic := range membersByTopic {
topicAssignments := r.assignTopic(membersByTopic[topic], partitionsByTopic[topic])
for member, parts := range topicAssignments {
memberAssignments, ok := assignments[member]
if !ok {
memberAssignments = make(map[string][]int)
assignments[member] = memberAssignments
}
memberAssignments[topic] = parts
}
}
return assignments
}
func (r RackAffinityGroupBalancer) UserData() ([]byte, error) {
return []byte(r.Rack), nil
}
func (r *RackAffinityGroupBalancer) assignTopic(members []GroupMember, partitions []Partition) map[string][]int {
zonedPartitions := make(map[string][]int)
for _, part := range partitions {
zone := part.Leader.Rack
zonedPartitions[zone] = append(zonedPartitions[zone], part.ID)
}
zonedConsumers := make(map[string][]string)
for _, member := range members {
zone := string(member.UserData)
zonedConsumers[zone] = append(zonedConsumers[zone], member.ID)
}
targetPerMember := len(partitions) / len(members)
remainder := len(partitions) % len(members)
assignments := make(map[string][]int)
// assign as many as possible in zone. this will assign up to partsPerMember
// to each consumer. it will also prefer to allocate remainder partitions
// in zone if possible.
for zone, parts := range zonedPartitions {
consumers := zonedConsumers[zone]
if len(consumers) == 0 {
continue
}
// don't over-allocate. cap partition assignments at the calculated
// target.
partsPerMember := len(parts) / len(consumers)
if partsPerMember > targetPerMember {
partsPerMember = targetPerMember
}
for _, consumer := range consumers {
assignments[consumer] = append(assignments[consumer], parts[:partsPerMember]...)
parts = parts[partsPerMember:]
}
// if we had enough partitions for each consumer in this zone to hit its
// target, attempt to use any leftover partitions to satisfy the total
// remainder by adding at most 1 partition per consumer.
leftover := len(parts)
if partsPerMember == targetPerMember {
if leftover > remainder {
leftover = remainder
}
if leftover > len(consumers) {
leftover = len(consumers)
}
remainder -= leftover
}
// this loop covers the case where we're assigning extra partitions or
// if there weren't enough to satisfy the targetPerMember and the zoned
// partitions didn't divide evenly.
for i := 0; i < leftover; i++ {
assignments[consumers[i]] = append(assignments[consumers[i]], parts[i])
}
parts = parts[leftover:]
if len(parts) == 0 {
delete(zonedPartitions, zone)
} else {
zonedPartitions[zone] = parts
}
}
// assign out remainders regardless of zone.
var remaining []int
for _, partitions := range zonedPartitions {
remaining = append(remaining, partitions...)
}
for _, member := range members {
assigned := assignments[member.ID]
delta := targetPerMember - len(assigned)
// if it were possible to assign the remainder in zone, it's been taken
// care of already. now we will portion out any remainder to a member
// that can take it.
if delta >= 0 && remainder > 0 {
delta++
remainder--
}
if delta > 0 {
assignments[member.ID] = append(assigned, remaining[:delta]...)
remaining = remaining[delta:]
}
}
return assignments
}
// findPartitions extracts the partition ids associated with the topic from the
// list of Partitions provided.
func findPartitions(topic string, partitions []Partition) []int {
var ids []int
for _, partition := range partitions {
if partition.Topic == topic {
ids = append(ids, partition.ID)
}
}
return ids
}
// findMembersByTopic groups the memberGroupMetadata by topic.
func findMembersByTopic(members []GroupMember) map[string][]GroupMember {
membersByTopic := map[string][]GroupMember{}
for _, member := range members {
for _, topic := range member.Topics {
membersByTopic[topic] = append(membersByTopic[topic], member)
}
}
// normalize ordering of members to enabling grouping across topics by partitions
//
// Want:
// C0 [T0/P0, T1/P0]
// C1 [T0/P1, T1/P1]
//
// Not:
// C0 [T0/P0, T1/P1]
// C1 [T0/P1, T1/P0]
//
// Even though the later is still round robin, the partitions are crossed
//
for _, members := range membersByTopic {
sort.Slice(members, func(i, j int) bool {
return members[i].ID < members[j].ID
})
}
return membersByTopic
}
// findGroupBalancer returns the GroupBalancer with the specified protocolName
// from the slice provided.
func findGroupBalancer(protocolName string, balancers []GroupBalancer) (GroupBalancer, bool) {
for _, balancer := range balancers {
if balancer.ProtocolName() == protocolName {
return balancer, true
}
}
return nil, false
}
|