1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
|
package kafka
import (
"context"
"crypto/tls"
"errors"
"fmt"
"io"
"math/rand"
"net"
"runtime/pprof"
"sort"
"strconv"
"strings"
"sync"
"sync/atomic"
"time"
"github.com/segmentio/kafka-go/protocol"
"github.com/segmentio/kafka-go/protocol/apiversions"
"github.com/segmentio/kafka-go/protocol/createtopics"
"github.com/segmentio/kafka-go/protocol/findcoordinator"
meta "github.com/segmentio/kafka-go/protocol/metadata"
"github.com/segmentio/kafka-go/protocol/saslauthenticate"
"github.com/segmentio/kafka-go/protocol/saslhandshake"
"github.com/segmentio/kafka-go/sasl"
)
// Request is an interface implemented by types that represent messages sent
// from kafka clients to brokers.
type Request = protocol.Message
// Response is an interface implemented by types that represent messages sent
// from kafka brokers in response to client requests.
type Response = protocol.Message
// RoundTripper is an interface implemented by types which support interacting
// with kafka brokers.
type RoundTripper interface {
// RoundTrip sends a request to a kafka broker and returns the response that
// was received, or a non-nil error.
//
// The context passed as first argument can be used to asynchronnously abort
// the call if needed.
RoundTrip(context.Context, net.Addr, Request) (Response, error)
}
// Transport is an implementation of the RoundTripper interface.
//
// Transport values manage a pool of connections and automatically discovers the
// clusters layout to route requests to the appropriate brokers.
//
// Transport values are safe to use concurrently from multiple goroutines.
//
// Note: The intent is for the Transport to become the underlying layer of the
// kafka.Reader and kafka.Writer types.
type Transport struct {
// A function used to establish connections to the kafka cluster.
Dial func(context.Context, string, string) (net.Conn, error)
// Time limit set for establishing connections to the kafka cluster. This
// limit includes all round trips done to establish the connections (TLS
// handshake, SASL negotiation, etc...).
//
// Defaults to 5s.
DialTimeout time.Duration
// Maximum amount of time that connections will remain open and unused.
// The transport will manage to automatically close connections that have
// been idle for too long, and re-open them on demand when the transport is
// used again.
//
// Defaults to 30s.
IdleTimeout time.Duration
// TTL for the metadata cached by this transport. Note that the value
// configured here is an upper bound, the transport randomizes the TTLs to
// avoid getting into states where multiple clients end up synchronized and
// cause bursts of requests to the kafka broker.
//
// Default to 6s.
MetadataTTL time.Duration
// Topic names for the metadata cached by this transport. If this field is left blank,
// metadata information of all topics in the cluster will be retrieved.
MetadataTopics []string
// Unique identifier that the transport communicates to the brokers when it
// sends requests.
ClientID string
// An optional configuration for TLS connections established by this
// transport.
//
// If the Server
TLS *tls.Config
// SASL configures the Transfer to use SASL authentication.
SASL sasl.Mechanism
// An optional resolver used to translate broker host names into network
// addresses.
//
// The resolver will be called for every request (not every connection),
// making it possible to implement ACL policies by validating that the
// program is allowed to connect to the kafka broker. This also means that
// the resolver should probably provide a caching layer to avoid storming
// the service discovery backend with requests.
//
// When set, the Dial function is not responsible for performing name
// resolution, and is always called with a pre-resolved address.
Resolver BrokerResolver
// The background context used to control goroutines started internally by
// the transport.
//
// If nil, context.Background() is used instead.
Context context.Context
mutex sync.RWMutex
pools map[networkAddress]*connPool
}
// DefaultTransport is the default transport used by kafka clients in this
// package.
var DefaultTransport RoundTripper = &Transport{
Dial: (&net.Dialer{
Timeout: 3 * time.Second,
DualStack: true,
}).DialContext,
}
// CloseIdleConnections closes all idle connections immediately, and marks all
// connections that are in use to be closed when they become idle again.
func (t *Transport) CloseIdleConnections() {
t.mutex.Lock()
defer t.mutex.Unlock()
for _, pool := range t.pools {
pool.unref()
}
for k := range t.pools {
delete(t.pools, k)
}
}
// RoundTrip sends a request to a kafka cluster and returns the response, or an
// error if no responses were received.
//
// Message types are available in sub-packages of the protocol package. Each
// kafka API is implemented in a different sub-package. For example, the request
// and response types for the Fetch API are available in the protocol/fetch
// package.
//
// The type of the response message will match the type of the request. For
// example, if RoundTrip was called with a *fetch.Request as argument, the value
// returned will be of type *fetch.Response. It is safe for the program to do a
// type assertion after checking that no error was returned.
//
// This example illustrates the way this method is expected to be used:
//
// r, err := transport.RoundTrip(ctx, addr, &fetch.Request{ ... })
// if err != nil {
// ...
// } else {
// res := r.(*fetch.Response)
// ...
// }
//
// The transport automatically selects the highest version of the API that is
// supported by both the kafka-go package and the kafka broker. The negotiation
// happens transparently once when connections are established.
//
// This API was introduced in version 0.4 as a way to leverage the lower-level
// features of the kafka protocol, but also provide a more efficient way of
// managing connections to kafka brokers.
func (t *Transport) RoundTrip(ctx context.Context, addr net.Addr, req Request) (Response, error) {
p := t.grabPool(addr)
defer p.unref()
return p.roundTrip(ctx, req)
}
func (t *Transport) dial() func(context.Context, string, string) (net.Conn, error) {
if t.Dial != nil {
return t.Dial
}
return defaultDialer.DialContext
}
func (t *Transport) dialTimeout() time.Duration {
if t.DialTimeout > 0 {
return t.DialTimeout
}
return 5 * time.Second
}
func (t *Transport) idleTimeout() time.Duration {
if t.IdleTimeout > 0 {
return t.IdleTimeout
}
return 30 * time.Second
}
func (t *Transport) metadataTTL() time.Duration {
if t.MetadataTTL > 0 {
return t.MetadataTTL
}
return 6 * time.Second
}
func (t *Transport) grabPool(addr net.Addr) *connPool {
k := networkAddress{
network: addr.Network(),
address: addr.String(),
}
t.mutex.RLock()
p := t.pools[k]
if p != nil {
p.ref()
}
t.mutex.RUnlock()
if p != nil {
return p
}
t.mutex.Lock()
defer t.mutex.Unlock()
if p := t.pools[k]; p != nil {
p.ref()
return p
}
ctx, cancel := context.WithCancel(t.context())
p = &connPool{
refc: 2,
dial: t.dial(),
dialTimeout: t.dialTimeout(),
idleTimeout: t.idleTimeout(),
metadataTTL: t.metadataTTL(),
metadataTopics: t.MetadataTopics,
clientID: t.ClientID,
tls: t.TLS,
sasl: t.SASL,
resolver: t.Resolver,
ready: make(event),
wake: make(chan event),
conns: make(map[int32]*connGroup),
cancel: cancel,
}
p.ctrl = p.newConnGroup(addr)
go p.discover(ctx, p.wake)
if t.pools == nil {
t.pools = make(map[networkAddress]*connPool)
}
t.pools[k] = p
return p
}
func (t *Transport) context() context.Context {
if t.Context != nil {
return t.Context
}
return context.Background()
}
type event chan struct{}
func (e event) trigger() { close(e) }
type connPool struct {
refc uintptr
// Immutable fields of the connection pool. Connections access these field
// on their parent pool in a ready-only fashion, so no synchronization is
// required.
dial func(context.Context, string, string) (net.Conn, error)
dialTimeout time.Duration
idleTimeout time.Duration
metadataTTL time.Duration
metadataTopics []string
clientID string
tls *tls.Config
sasl sasl.Mechanism
resolver BrokerResolver
// Signaling mechanisms to orchestrate communications between the pool and
// the rest of the program.
once sync.Once // ensure that `ready` is triggered only once
ready event // triggered after the first metadata update
wake chan event // used to force metadata updates
cancel context.CancelFunc
// Mutable fields of the connection pool, access must be synchronized.
mutex sync.RWMutex
conns map[int32]*connGroup // data connections used for produce/fetch/etc...
ctrl *connGroup // control connections used for metadata requests
state atomic.Value // cached cluster state
}
type connPoolState struct {
metadata *meta.Response // last metadata response seen by the pool
err error // last error from metadata requests
layout protocol.Cluster // cluster layout built from metadata response
}
func (p *connPool) grabState() connPoolState {
state, _ := p.state.Load().(connPoolState)
return state
}
func (p *connPool) setState(state connPoolState) {
p.state.Store(state)
}
func (p *connPool) ref() {
atomic.AddUintptr(&p.refc, +1)
}
func (p *connPool) unref() {
if atomic.AddUintptr(&p.refc, ^uintptr(0)) == 0 {
p.mutex.Lock()
defer p.mutex.Unlock()
for _, conns := range p.conns {
conns.closeIdleConns()
}
p.ctrl.closeIdleConns()
p.cancel()
}
}
func (p *connPool) roundTrip(ctx context.Context, req Request) (Response, error) {
// This first select should never block after the first metadata response
// that would mark the pool as `ready`.
select {
case <-p.ready:
case <-ctx.Done():
return nil, ctx.Err()
}
state := p.grabState()
var response promise
switch m := req.(type) {
case *meta.Request:
// We serve metadata requests directly from the transport cache unless
// we would like to auto create a topic that isn't in our cache.
//
// This reduces the number of round trips to kafka brokers while keeping
// the logic simple when applying partitioning strategies.
if state.err != nil {
return nil, state.err
}
cachedMeta := filterMetadataResponse(m, state.metadata)
// requestNeeded indicates if we need to send this metadata request to the server.
// It's true when we want to auto-create topics and we don't have the topic in our
// cache.
var requestNeeded bool
if m.AllowAutoTopicCreation {
for _, topic := range cachedMeta.Topics {
if topic.ErrorCode == int16(UnknownTopicOrPartition) {
requestNeeded = true
break
}
}
}
if !requestNeeded {
return cachedMeta, nil
}
case protocol.Splitter:
// Messages that implement the Splitter interface trigger the creation of
// multiple requests that are all merged back into a single results by
// a merger.
messages, merger, err := m.Split(state.layout)
if err != nil {
return nil, err
}
promises := make([]promise, len(messages))
for i, m := range messages {
promises[i] = p.sendRequest(ctx, m, state)
}
response = join(promises, messages, merger)
}
if response == nil {
response = p.sendRequest(ctx, req, state)
}
r, err := response.await(ctx)
if err != nil {
return r, err
}
switch resp := r.(type) {
case *createtopics.Response:
// Force an update of the metadata when adding topics,
// otherwise the cached state would get out of sync.
topicsToRefresh := make([]string, 0, len(resp.Topics))
for _, topic := range resp.Topics {
// fixes issue 672: don't refresh topics that failed to create, it causes the library to hang indefinitely
if topic.ErrorCode != 0 {
continue
}
topicsToRefresh = append(topicsToRefresh, topic.Name)
}
p.refreshMetadata(ctx, topicsToRefresh)
case *meta.Response:
m := req.(*meta.Request)
// If we get here with allow auto topic creation then
// we didn't have that topic in our cache, so we should update
// the cache.
if m.AllowAutoTopicCreation {
topicsToRefresh := make([]string, 0, len(resp.Topics))
for _, topic := range resp.Topics {
// Don't refresh topics that failed to create, since that may
// mean that enable automatic topic creation is not enabled.
// That causes the library to hang indefinitely, same as
// don't refresh topics that failed to create,
// createtopics process. Fixes issue 806.
if topic.ErrorCode != 0 {
continue
}
topicsToRefresh = append(topicsToRefresh, topic.Name)
}
p.refreshMetadata(ctx, topicsToRefresh)
}
}
return r, nil
}
// refreshMetadata forces an update of the cached cluster metadata, and waits
// for the given list of topics to appear. This waiting mechanism is necessary
// to account for the fact that topic creation is asynchronous in kafka, and
// causes subsequent requests to fail while the cluster state is propagated to
// all the brokers.
func (p *connPool) refreshMetadata(ctx context.Context, expectTopics []string) {
minBackoff := 100 * time.Millisecond
maxBackoff := 2 * time.Second
cancel := ctx.Done()
for ctx.Err() == nil {
notify := make(event)
select {
case <-cancel:
return
case p.wake <- notify:
select {
case <-notify:
case <-cancel:
return
}
}
state := p.grabState()
found := 0
for _, topic := range expectTopics {
if _, ok := state.layout.Topics[topic]; ok {
found++
}
}
if found == len(expectTopics) {
return
}
if delay := time.Duration(rand.Int63n(int64(minBackoff))); delay > 0 {
timer := time.NewTimer(minBackoff)
select {
case <-cancel:
case <-timer.C:
}
timer.Stop()
if minBackoff *= 2; minBackoff > maxBackoff {
minBackoff = maxBackoff
}
}
}
}
func (p *connPool) setReady() {
p.once.Do(p.ready.trigger)
}
// update is called periodically by the goroutine running the discover method
// to refresh the cluster layout information used by the transport to route
// requests to brokers.
func (p *connPool) update(ctx context.Context, metadata *meta.Response, err error) {
var layout protocol.Cluster
if metadata != nil {
metadata.ThrottleTimeMs = 0
// Normalize the lists so we can apply binary search on them.
sortMetadataBrokers(metadata.Brokers)
sortMetadataTopics(metadata.Topics)
for i := range metadata.Topics {
t := &metadata.Topics[i]
sortMetadataPartitions(t.Partitions)
}
layout = makeLayout(metadata)
}
state := p.grabState()
addBrokers := make(map[int32]struct{})
delBrokers := make(map[int32]struct{})
if err != nil {
// Only update the error on the transport if the cluster layout was
// unknown. This ensures that we prioritize a previously known state
// of the cluster to reduce the impact of transient failures.
if state.metadata != nil {
return
}
state.err = err
} else {
for id, b2 := range layout.Brokers {
if b1, ok := state.layout.Brokers[id]; !ok {
addBrokers[id] = struct{}{}
} else if b1 != b2 {
addBrokers[id] = struct{}{}
delBrokers[id] = struct{}{}
}
}
for id := range state.layout.Brokers {
if _, ok := layout.Brokers[id]; !ok {
delBrokers[id] = struct{}{}
}
}
state.metadata, state.layout = metadata, layout
state.err = nil
}
defer p.setReady()
defer p.setState(state)
if len(addBrokers) != 0 || len(delBrokers) != 0 {
// Only acquire the lock when there is a change of layout. This is an
// infrequent event so we don't risk introducing regular contention on
// the mutex if we were to lock it on every update.
p.mutex.Lock()
defer p.mutex.Unlock()
if ctx.Err() != nil {
return // the pool has been closed, no need to update
}
for id := range delBrokers {
if broker := p.conns[id]; broker != nil {
broker.closeIdleConns()
delete(p.conns, id)
}
}
for id := range addBrokers {
broker := layout.Brokers[id]
p.conns[id] = p.newBrokerConnGroup(Broker{
Rack: broker.Rack,
Host: broker.Host,
Port: int(broker.Port),
ID: int(broker.ID),
})
}
}
}
// discover is the entry point of an internal goroutine for the transport which
// periodically requests updates of the cluster metadata and refreshes the
// transport cached cluster layout.
func (p *connPool) discover(ctx context.Context, wake <-chan event) {
prng := rand.New(rand.NewSource(time.Now().UnixNano()))
metadataTTL := func() time.Duration {
return time.Duration(prng.Int63n(int64(p.metadataTTL)))
}
timer := time.NewTimer(metadataTTL())
defer timer.Stop()
var notify event
done := ctx.Done()
req := &meta.Request{
TopicNames: p.metadataTopics,
}
for {
c, err := p.grabClusterConn(ctx)
if err != nil {
p.update(ctx, nil, err)
} else {
res := make(async, 1)
deadline, cancel := context.WithTimeout(ctx, p.metadataTTL)
c.reqs <- connRequest{
ctx: deadline,
req: req,
res: res,
}
r, err := res.await(deadline)
cancel()
if err != nil && errors.Is(err, ctx.Err()) {
return
}
ret, _ := r.(*meta.Response)
p.update(ctx, ret, err)
}
if notify != nil {
notify.trigger()
notify = nil
}
select {
case <-timer.C:
timer.Reset(metadataTTL())
case <-done:
return
case notify = <-wake:
}
}
}
// grabBrokerConn returns a connection to a specific broker represented by the
// broker id passed as argument. If the broker id was not known, an error is
// returned.
func (p *connPool) grabBrokerConn(ctx context.Context, brokerID int32) (*conn, error) {
p.mutex.RLock()
g := p.conns[brokerID]
p.mutex.RUnlock()
if g == nil {
return nil, BrokerNotAvailable
}
return g.grabConnOrConnect(ctx)
}
// grabClusterConn returns the connection to the kafka cluster that the pool is
// configured to connect to.
//
// The transport uses a shared `control` connection to the cluster for any
// requests that aren't supposed to be sent to specific brokers (e.g. Fetch or
// Produce requests). Requests intended to be routed to specific brokers are
// dispatched on a separate pool of connections that the transport maintains.
// This split help avoid head-of-line blocking situations where control requests
// like Metadata would be queued behind large responses from Fetch requests for
// example.
//
// In either cases, the requests are multiplexed so we can keep a minimal number
// of connections open (N+1, where N is the number of brokers in the cluster).
func (p *connPool) grabClusterConn(ctx context.Context) (*conn, error) {
return p.ctrl.grabConnOrConnect(ctx)
}
func (p *connPool) sendRequest(ctx context.Context, req Request, state connPoolState) promise {
brokerID := int32(-1)
switch m := req.(type) {
case protocol.BrokerMessage:
// Some requests are supposed to be sent to specific brokers (e.g. the
// partition leaders). They implement the BrokerMessage interface to
// delegate the routing decision to each message type.
broker, err := m.Broker(state.layout)
if err != nil {
return reject(err)
}
brokerID = broker.ID
case protocol.GroupMessage:
// Some requests are supposed to be sent to a group coordinator,
// look up which broker is currently the coordinator for the group
// so we can get a connection to that broker.
//
// TODO: should we cache the coordinator info?
p := p.sendRequest(ctx, &findcoordinator.Request{Key: m.Group()}, state)
r, err := p.await(ctx)
if err != nil {
return reject(err)
}
brokerID = r.(*findcoordinator.Response).NodeID
case protocol.TransactionalMessage:
p := p.sendRequest(ctx, &findcoordinator.Request{
Key: m.Transaction(),
KeyType: int8(CoordinatorKeyTypeTransaction),
}, state)
r, err := p.await(ctx)
if err != nil {
return reject(err)
}
brokerID = r.(*findcoordinator.Response).NodeID
}
var c *conn
var err error
if brokerID >= 0 {
c, err = p.grabBrokerConn(ctx, brokerID)
} else {
c, err = p.grabClusterConn(ctx)
}
if err != nil {
return reject(err)
}
res := make(async, 1)
c.reqs <- connRequest{
ctx: ctx,
req: req,
res: res,
}
return res
}
func filterMetadataResponse(req *meta.Request, res *meta.Response) *meta.Response {
ret := *res
if req.TopicNames != nil {
ret.Topics = make([]meta.ResponseTopic, len(req.TopicNames))
for i, topicName := range req.TopicNames {
j, ok := findMetadataTopic(res.Topics, topicName)
if ok {
ret.Topics[i] = res.Topics[j]
} else {
ret.Topics[i] = meta.ResponseTopic{
ErrorCode: int16(UnknownTopicOrPartition),
Name: topicName,
}
}
}
}
return &ret
}
func findMetadataTopic(topics []meta.ResponseTopic, topicName string) (int, bool) {
i := sort.Search(len(topics), func(i int) bool {
return topics[i].Name >= topicName
})
return i, i >= 0 && i < len(topics) && topics[i].Name == topicName
}
func sortMetadataBrokers(brokers []meta.ResponseBroker) {
sort.Slice(brokers, func(i, j int) bool {
return brokers[i].NodeID < brokers[j].NodeID
})
}
func sortMetadataTopics(topics []meta.ResponseTopic) {
sort.Slice(topics, func(i, j int) bool {
return topics[i].Name < topics[j].Name
})
}
func sortMetadataPartitions(partitions []meta.ResponsePartition) {
sort.Slice(partitions, func(i, j int) bool {
return partitions[i].PartitionIndex < partitions[j].PartitionIndex
})
}
func makeLayout(metadataResponse *meta.Response) protocol.Cluster {
layout := protocol.Cluster{
Controller: metadataResponse.ControllerID,
Brokers: make(map[int32]protocol.Broker),
Topics: make(map[string]protocol.Topic),
}
for _, broker := range metadataResponse.Brokers {
layout.Brokers[broker.NodeID] = protocol.Broker{
Rack: broker.Rack,
Host: broker.Host,
Port: broker.Port,
ID: broker.NodeID,
}
}
for _, topic := range metadataResponse.Topics {
if topic.IsInternal {
continue // TODO: do we need to expose those?
}
layout.Topics[topic.Name] = protocol.Topic{
Name: topic.Name,
Error: topic.ErrorCode,
Partitions: makePartitions(topic.Partitions),
}
}
return layout
}
func makePartitions(metadataPartitions []meta.ResponsePartition) map[int32]protocol.Partition {
protocolPartitions := make(map[int32]protocol.Partition, len(metadataPartitions))
numBrokerIDs := 0
for _, p := range metadataPartitions {
numBrokerIDs += len(p.ReplicaNodes) + len(p.IsrNodes) + len(p.OfflineReplicas)
}
// Reduce the memory footprint a bit by allocating a single buffer to write
// all broker ids.
brokerIDs := make([]int32, 0, numBrokerIDs)
for _, p := range metadataPartitions {
var rep, isr, off []int32
brokerIDs, rep = appendBrokerIDs(brokerIDs, p.ReplicaNodes)
brokerIDs, isr = appendBrokerIDs(brokerIDs, p.IsrNodes)
brokerIDs, off = appendBrokerIDs(brokerIDs, p.OfflineReplicas)
protocolPartitions[p.PartitionIndex] = protocol.Partition{
ID: p.PartitionIndex,
Error: p.ErrorCode,
Leader: p.LeaderID,
Replicas: rep,
ISR: isr,
Offline: off,
}
}
return protocolPartitions
}
func appendBrokerIDs(ids, brokers []int32) ([]int32, []int32) {
i := len(ids)
ids = append(ids, brokers...)
return ids, ids[i:len(ids):len(ids)]
}
func (p *connPool) newConnGroup(a net.Addr) *connGroup {
return &connGroup{
addr: a,
pool: p,
broker: Broker{
ID: -1,
},
}
}
func (p *connPool) newBrokerConnGroup(broker Broker) *connGroup {
return &connGroup{
addr: &networkAddress{
network: "tcp",
address: net.JoinHostPort(broker.Host, strconv.Itoa(broker.Port)),
},
pool: p,
broker: broker,
}
}
type connRequest struct {
ctx context.Context
req Request
res async
}
// The promise interface is used as a message passing abstraction to coordinate
// between goroutines that handle requests and responses.
type promise interface {
// Waits until the promise is resolved, rejected, or the context canceled.
await(context.Context) (Response, error)
}
// async is an implementation of the promise interface which supports resolving
// or rejecting the await call asynchronously.
type async chan interface{}
func (p async) await(ctx context.Context) (Response, error) {
select {
case x := <-p:
switch v := x.(type) {
case nil:
return nil, nil // A nil response is ok (e.g. when RequiredAcks is None)
case Response:
return v, nil
case error:
return nil, v
default:
panic(fmt.Errorf("BUG: promise resolved with impossible value of type %T", v))
}
case <-ctx.Done():
return nil, ctx.Err()
}
}
func (p async) resolve(res Response) { p <- res }
func (p async) reject(err error) { p <- err }
// rejected is an implementation of the promise interface which is always
// returns an error. Values of this type are constructed using the reject
// function.
type rejected struct{ err error }
func reject(err error) promise { return &rejected{err: err} }
func (p *rejected) await(ctx context.Context) (Response, error) {
return nil, p.err
}
// joined is an implementation of the promise interface which merges results
// from multiple promises into one await call using a merger.
type joined struct {
promises []promise
requests []Request
merger protocol.Merger
}
func join(promises []promise, requests []Request, merger protocol.Merger) promise {
return &joined{
promises: promises,
requests: requests,
merger: merger,
}
}
func (p *joined) await(ctx context.Context) (Response, error) {
results := make([]interface{}, len(p.promises))
for i, sub := range p.promises {
m, err := sub.await(ctx)
if err != nil {
results[i] = err
} else {
results[i] = m
}
}
return p.merger.Merge(p.requests, results)
}
// Default dialer used by the transport connections when no Dial function
// was configured by the program.
var defaultDialer = net.Dialer{
Timeout: 3 * time.Second,
DualStack: true,
}
// connGroup represents a logical connection group to a kafka broker. The
// actual network connections are lazily open before sending requests, and
// closed if they are unused for longer than the idle timeout.
type connGroup struct {
addr net.Addr
broker Broker
// Immutable state of the connection.
pool *connPool
// Shared state of the connection, this is synchronized on the mutex through
// calls to the synchronized method. Both goroutines of the connection share
// the state maintained in these fields.
mutex sync.Mutex
closed bool
idleConns []*conn // stack of idle connections
}
func (g *connGroup) closeIdleConns() {
g.mutex.Lock()
conns := g.idleConns
g.idleConns = nil
g.closed = true
g.mutex.Unlock()
for _, c := range conns {
c.close()
}
}
func (g *connGroup) grabConnOrConnect(ctx context.Context) (*conn, error) {
rslv := g.pool.resolver
addr := g.addr
var c *conn
if rslv == nil {
c = g.grabConn()
} else {
var err error
broker := g.broker
if broker.ID < 0 {
host, port, err := splitHostPortNumber(addr.String())
if err != nil {
return nil, err
}
broker.Host = host
broker.Port = port
}
ipAddrs, err := rslv.LookupBrokerIPAddr(ctx, broker)
if err != nil {
return nil, err
}
for _, ipAddr := range ipAddrs {
network := addr.Network()
address := net.JoinHostPort(ipAddr.String(), strconv.Itoa(broker.Port))
if c = g.grabConnTo(network, address); c != nil {
break
}
}
}
if c == nil {
connChan := make(chan *conn)
errChan := make(chan error)
go func() {
c, err := g.connect(ctx, addr)
if err != nil {
select {
case errChan <- err:
case <-ctx.Done():
}
} else {
select {
case connChan <- c:
case <-ctx.Done():
if !g.releaseConn(c) {
c.close()
}
}
}
}()
select {
case c = <-connChan:
case err := <-errChan:
return nil, err
case <-ctx.Done():
return nil, ctx.Err()
}
}
return c, nil
}
func (g *connGroup) grabConnTo(network, address string) *conn {
g.mutex.Lock()
defer g.mutex.Unlock()
for i := len(g.idleConns) - 1; i >= 0; i-- {
c := g.idleConns[i]
if c.network == network && c.address == address {
copy(g.idleConns[i:], g.idleConns[i+1:])
n := len(g.idleConns) - 1
g.idleConns[n] = nil
g.idleConns = g.idleConns[:n]
if c.timer != nil {
c.timer.Stop()
}
return c
}
}
return nil
}
func (g *connGroup) grabConn() *conn {
g.mutex.Lock()
defer g.mutex.Unlock()
if len(g.idleConns) == 0 {
return nil
}
n := len(g.idleConns) - 1
c := g.idleConns[n]
g.idleConns[n] = nil
g.idleConns = g.idleConns[:n]
if c.timer != nil {
c.timer.Stop()
}
return c
}
func (g *connGroup) removeConn(c *conn) bool {
g.mutex.Lock()
defer g.mutex.Unlock()
if c.timer != nil {
c.timer.Stop()
}
for i, x := range g.idleConns {
if x == c {
copy(g.idleConns[i:], g.idleConns[i+1:])
n := len(g.idleConns) - 1
g.idleConns[n] = nil
g.idleConns = g.idleConns[:n]
return true
}
}
return false
}
func (g *connGroup) releaseConn(c *conn) bool {
idleTimeout := g.pool.idleTimeout
g.mutex.Lock()
defer g.mutex.Unlock()
if g.closed {
return false
}
if c.timer != nil {
c.timer.Reset(idleTimeout)
} else {
c.timer = time.AfterFunc(idleTimeout, func() {
if g.removeConn(c) {
c.close()
}
})
}
g.idleConns = append(g.idleConns, c)
return true
}
func (g *connGroup) connect(ctx context.Context, addr net.Addr) (*conn, error) {
deadline := time.Now().Add(g.pool.dialTimeout)
ctx, cancel := context.WithDeadline(ctx, deadline)
defer cancel()
network := strings.Split(addr.Network(), ",")
address := strings.Split(addr.String(), ",")
var netConn net.Conn
var netAddr net.Addr
var err error
if len(address) > 1 {
// Shuffle the list of addresses to randomize the order in which
// connections are attempted. This prevents routing all connections
// to the first broker (which will usually succeed).
rand.Shuffle(len(address), func(i, j int) {
network[i], network[j] = network[j], network[i]
address[i], address[j] = address[j], address[i]
})
}
for i := range address {
netConn, err = g.pool.dial(ctx, network[i], address[i])
if err == nil {
netAddr = &networkAddress{
network: network[i],
address: address[i],
}
break
}
}
if err != nil {
return nil, err
}
defer func() {
if netConn != nil {
netConn.Close()
}
}()
if tlsConfig := g.pool.tls; tlsConfig != nil {
if tlsConfig.ServerName == "" {
host, _ := splitHostPort(netAddr.String())
tlsConfig = tlsConfig.Clone()
tlsConfig.ServerName = host
}
netConn = tls.Client(netConn, tlsConfig)
}
pc := protocol.NewConn(netConn, g.pool.clientID)
pc.SetDeadline(deadline)
r, err := pc.RoundTrip(new(apiversions.Request))
if err != nil {
return nil, err
}
res := r.(*apiversions.Response)
ver := make(map[protocol.ApiKey]int16, len(res.ApiKeys))
if res.ErrorCode != 0 {
return nil, fmt.Errorf("negotating API versions with kafka broker at %s: %w", g.addr, Error(res.ErrorCode))
}
for _, r := range res.ApiKeys {
apiKey := protocol.ApiKey(r.ApiKey)
ver[apiKey] = apiKey.SelectVersion(r.MinVersion, r.MaxVersion)
}
pc.SetVersions(ver)
pc.SetDeadline(time.Time{})
if g.pool.sasl != nil {
host, port, err := splitHostPortNumber(netAddr.String())
if err != nil {
return nil, err
}
metadata := &sasl.Metadata{
Host: host,
Port: port,
}
if err := authenticateSASL(sasl.WithMetadata(ctx, metadata), pc, g.pool.sasl); err != nil {
return nil, err
}
}
reqs := make(chan connRequest)
c := &conn{
network: netAddr.Network(),
address: netAddr.String(),
reqs: reqs,
group: g,
}
go c.run(pc, reqs)
netConn = nil
return c, nil
}
type conn struct {
reqs chan<- connRequest
network string
address string
once sync.Once
group *connGroup
timer *time.Timer
}
func (c *conn) close() {
c.once.Do(func() { close(c.reqs) })
}
func (c *conn) run(pc *protocol.Conn, reqs <-chan connRequest) {
defer pc.Close()
for cr := range reqs {
r, err := c.roundTrip(cr.ctx, pc, cr.req)
if err != nil {
cr.res.reject(err)
if !errors.Is(err, protocol.ErrNoRecord) {
break
}
} else {
cr.res.resolve(r)
}
if !c.group.releaseConn(c) {
break
}
}
}
func (c *conn) roundTrip(ctx context.Context, pc *protocol.Conn, req Request) (Response, error) {
pprof.SetGoroutineLabels(ctx)
defer pprof.SetGoroutineLabels(context.Background())
if deadline, hasDeadline := ctx.Deadline(); hasDeadline {
pc.SetDeadline(deadline)
defer pc.SetDeadline(time.Time{})
}
return pc.RoundTrip(req)
}
// authenticateSASL performs all of the required requests to authenticate this
// connection. If any step fails, this function returns with an error. A nil
// error indicates successful authentication.
func authenticateSASL(ctx context.Context, pc *protocol.Conn, mechanism sasl.Mechanism) error {
if err := saslHandshakeRoundTrip(pc, mechanism.Name()); err != nil {
return err
}
sess, state, err := mechanism.Start(ctx)
if err != nil {
return err
}
for completed := false; !completed; {
challenge, err := saslAuthenticateRoundTrip(pc, state)
if err != nil {
if errors.Is(err, io.EOF) {
// the broker may communicate a failed exchange by closing the
// connection (esp. in the case where we're passing opaque sasl
// data over the wire since there's no protocol info).
return SASLAuthenticationFailed
}
return err
}
completed, state, err = sess.Next(ctx, challenge)
if err != nil {
return err
}
}
return nil
}
// saslHandshake sends the SASL handshake message. This will determine whether
// the Mechanism is supported by the cluster. If it's not, this function will
// error out with UnsupportedSASLMechanism.
//
// If the mechanism is unsupported, the handshake request will reply with the
// list of the cluster's configured mechanisms, which could potentially be used
// to facilitate negotiation. At the moment, we are not negotiating the
// mechanism as we believe that brokers are usually known to the client, and
// therefore the client should already know which mechanisms are supported.
//
// See http://kafka.apache.org/protocol.html#The_Messages_SaslHandshake
func saslHandshakeRoundTrip(pc *protocol.Conn, mechanism string) error {
msg, err := pc.RoundTrip(&saslhandshake.Request{
Mechanism: mechanism,
})
if err != nil {
return err
}
res := msg.(*saslhandshake.Response)
if res.ErrorCode != 0 {
err = Error(res.ErrorCode)
}
return err
}
// saslAuthenticate sends the SASL authenticate message. This function must
// be immediately preceded by a successful saslHandshake.
//
// See http://kafka.apache.org/protocol.html#The_Messages_SaslAuthenticate
func saslAuthenticateRoundTrip(pc *protocol.Conn, data []byte) ([]byte, error) {
msg, err := pc.RoundTrip(&saslauthenticate.Request{
AuthBytes: data,
})
if err != nil {
return nil, err
}
res := msg.(*saslauthenticate.Response)
if res.ErrorCode != 0 {
err = makeError(res.ErrorCode, res.ErrorMessage)
}
return res.AuthBytes, err
}
var _ RoundTripper = (*Transport)(nil)
|