1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
|
/*Package seq balabala
This package defines a *Seq* type, and provides some basic operations of sequence,
like validation of DNA/RNA/Protein sequence and getting reverse complement sequence.
This package was inspired by
[biogo](https://code.google.com/p/biogo/source/browse/#git%2Falphabet).
IUPAC nucleotide code: ACGTURYSWKMBDHVN
http://droog.gs.washington.edu/parc/images/iupac.html
code base Complement
A A T
C C G
G G C
T/U T A
M A/C K
R A/G Y
W A/T W
S C/G S
Y C/T R
K G/T M
V A/C/G B
H A/C/T D
D A/G/T H
B C/G/T V
X/N A/C/G/T X
. not A/C/G/T
or- gap
IUPAC amino acid code
A Ala Alanine
B Asx Aspartic acid or Asparagine [2]
C Cys Cysteine
D Asp Aspartic Acid
E Glu Glutamic Acid
F Phe Phenylalanine
G Gly Glycine
H His Histidine
I Ile Isoleucine
J Isoleucine or Leucine [4]
K Lys Lysine
L Leu Leucine
M Met Methionine
N Asn Asparagine
O pyrrolysine [6]
P Pro Proline
Q Gln Glutamine
R Arg Arginine
S Ser Serine
T Thr Threonine
U Sec selenocysteine [5,6]
V Val Valine
W Trp Tryptophan
Y Tyr Tyrosine
Z Glx Glutamine or Glutamic acid [2]
X unknown amino acid
. gaps
* End
Reference:
1. http://www.bioinformatics.org/sms/iupac.html
2. http://www.dnabaser.com/articles/IUPAC%20ambiguity%20codes.html
3. http://www.bioinformatics.org/sms2/iupac.html
4. http://www.matrixscience.com/blog/non-standard-amino-acid-residues.html
5. http://www.sbcs.qmul.ac.uk/iupac/AminoAcid/A2021.html#AA21
6. https://en.wikipedia.org/wiki/Amino_acid
*/
package seq
import (
"errors"
"fmt"
"runtime"
"sync"
"github.com/shenwei356/util/byteutil"
)
/*Alphabet could be defined. Attention that,
**the letters are case sensitive**.
For example, DNA:
DNA, _ = NewAlphabet(
"DNA",
[]byte("acgtACGT"),
[]byte("tgcaTGCA"),
[]byte(" -"),
[]byte("nN"))
*/
type Alphabet struct {
t string
isUnlimit bool
letters []byte
pairs []byte
gap []byte
ambiguous []byte
allLetters []byte
pairLetters []byte
}
// NewAlphabet is Constructor for type *Alphabet*
func NewAlphabet(
t string,
isUnlimit bool,
letters []byte,
pairs []byte,
gap []byte,
ambiguous []byte,
) (*Alphabet, error) {
a := &Alphabet{t, isUnlimit, letters, pairs, gap, ambiguous, []byte{}, []byte{}}
if isUnlimit {
return a, nil
}
if len(letters) != len(pairs) {
return a, errors.New("mismatch of length of letters and pairs")
}
for i := 0; i < len(letters); i++ {
a.allLetters = append(a.allLetters, letters[i])
}
// add gap and ambiguous code
for _, v := range gap {
a.allLetters = append(a.allLetters, v)
}
for _, v := range ambiguous {
a.allLetters = append(a.allLetters, v)
}
// construct special slice.
// index are the integer of a byte, and value is the original byte.
// it's faster than map!!!!
max := -1
for i := 0; i < len(a.allLetters); i++ {
b := int(a.allLetters[i])
if max < b {
max = b
}
}
a.pairLetters = make([]byte, max+1)
for i := 0; i < len(letters); i++ {
a.pairLetters[letters[i]-'\x00'] = pairs[i]
}
for _, v := range gap {
a.pairLetters[v-'\x00'] = v
}
for _, v := range ambiguous {
a.pairLetters[v-'\x00'] = v
}
return a, nil
}
// Clone of a Alphabet
func (a *Alphabet) Clone() *Alphabet {
return &Alphabet{
t: a.t,
isUnlimit: a.isUnlimit,
letters: []byte(string(a.letters)),
pairs: []byte(string(a.pairs)),
gap: []byte(string(a.gap)),
ambiguous: []byte(string(a.ambiguous)),
allLetters: []byte(string(a.allLetters)),
pairLetters: []byte(string(a.pairLetters)),
}
}
// Type returns type of the alphabet
func (a *Alphabet) Type() string {
return a.t
}
// Letters returns letters
func (a *Alphabet) Letters() []byte {
return a.letters
}
// Gaps returns gaps
func (a *Alphabet) Gaps() []byte {
return a.gap
}
// AmbiguousLetters returns AmbiguousLetters
func (a *Alphabet) AmbiguousLetters() []byte {
return a.ambiguous
}
// AllLetters return all letters
func (a *Alphabet) AllLetters() []byte {
return a.allLetters
}
// String returns type of the alphabet
func (a *Alphabet) String() string {
return a.t
}
// IsValidLetter is used to validate a letter
func (a *Alphabet) IsValidLetter(b byte) bool {
if a.isUnlimit {
return true
}
i := int(b)
if i >= len(a.pairLetters) {
return false
}
return a.pairLetters[i] != 0
}
// ValidSeqLengthThreshold is the threshold of sequence length that
// needed to parallelly checking sequence
var ValidSeqLengthThreshold = 10000
// ValidateWholeSeq is used to determin whether validate all bases of a seq
var ValidateWholeSeq = true
// ValidSeqThreads is the threads number of parallelly checking sequence
var ValidSeqThreads = runtime.NumCPU()
type seqCheckStatus struct {
err error
}
// IsValid is used to validate a byte slice
func (a *Alphabet) IsValid(s []byte) error {
if len(s) == 0 {
return nil
}
if a == nil || a.isUnlimit {
return nil
}
l := len(s)
var i int
if l < ValidSeqLengthThreshold {
for _, b := range s {
i = int(b)
if i >= len(a.pairLetters) || a.pairLetters[i] == 0 {
return fmt.Errorf("seq: invalid %s letter: %s", a, []byte{b})
}
}
return nil
}
if ValidateWholeSeq || ValidSeqThreads == 0 {
ValidSeqThreads = len(s)
}
chunkSize, start, end := int(l/ValidSeqThreads), 0, 0
var wg sync.WaitGroup
tokens := make(chan int, ValidSeqThreads)
ch := make(chan seqCheckStatus, ValidSeqThreads)
done := make(chan struct{})
finished := false
for i := 0; i < ValidSeqThreads; i++ {
start = i * chunkSize
end = (i + 1) * chunkSize
if end > l {
end = l
}
tokens <- 1
wg.Add(1)
go func(start, end int) {
defer func() {
<-tokens
wg.Done()
}()
select {
case <-done:
if !finished {
finished = true
close(ch)
return
}
default:
}
var j int
for i := start; i < end; i++ {
j = int(s[i])
if j >= len(a.pairLetters) || a.pairLetters[j] == 0 {
ch <- seqCheckStatus{fmt.Errorf("seq: invalid %s lebtter: %s at %d", a, []byte{s[i]}, i)}
close(done)
return
}
}
ch <- seqCheckStatus{nil}
}(start, end)
}
wg.Wait()
close(ch)
for status := range ch {
if status.err != nil {
return status.err
}
}
return nil
}
// PairLetter return the Pair Letter
func (a *Alphabet) PairLetter(b byte) (byte, error) {
if a.isUnlimit {
return b, nil
}
if int(b) >= len(a.pairLetters) {
return b, fmt.Errorf("seq: invalid letter: %c", b)
}
p := a.pairLetters[b-'\x00']
if p == 0 {
return b, fmt.Errorf("seq: invalid letter: %c", b)
}
return p, nil
}
/*Four types of alphabets are pre-defined:
DNA Deoxyribonucleotide code
DNAredundant DNA + Ambiguity Codes
RNA Oxyribonucleotide code
RNAredundant RNA + Ambiguity Codes
Protein Amino Acide single-letter Code
Unlimit Self-defined, including all 26 English letters
*/
var (
DNA *Alphabet
DNAredundant *Alphabet
RNA *Alphabet
RNAredundant *Alphabet
Protein *Alphabet
Unlimit *Alphabet
abProtein map[byte]bool
abDNAredundant map[byte]bool
abDNA map[byte]bool
abRNAredundant map[byte]bool
abRNA map[byte]bool
)
func init() {
DNA, _ = NewAlphabet(
"DNA",
false,
[]byte("acgtACGT"),
[]byte("tgcaTGCA"),
[]byte(" -."),
[]byte("nN."))
DNAredundant, _ = NewAlphabet(
"DNAredundant",
false,
[]byte("acgtryswkmbdhvACGTRYSWKMBDHV"),
[]byte("tgcayrswmkvhdbTGCAYRSWMKVHDB"),
[]byte(" -."),
[]byte("nN."))
RNA, _ = NewAlphabet(
"RNA",
false,
[]byte("acguACGU"),
[]byte("ugcaUGCA"),
[]byte(" -."),
[]byte("nN"))
RNAredundant, _ = NewAlphabet(
"RNAredundant",
false,
[]byte("acguryswkmbdhvACGURYSWKMBDHV"),
[]byte("ugcayrswmkvhdbUGCAYRSWMKVHDB"),
[]byte(" -."),
[]byte("nN"))
Protein, _ = NewAlphabet(
"Protein",
false,
[]byte("abcdefghijklmnopqrstuvwyzABCDEFGHIJKLMNOPQRSTUVWYZ"),
[]byte("abcdefghijklmnopqrstuvwyzABCDEFGHIJKLMNOPQRSTUVWYZ"),
[]byte(" -"),
[]byte("xX*_."))
Unlimit, _ = NewAlphabet(
"Unlimit",
true,
nil,
nil,
nil,
nil)
abProtein = slice2map(byteutil.Alphabet(Protein.AllLetters()))
abDNAredundant = slice2map(byteutil.Alphabet(DNAredundant.AllLetters()))
abDNA = slice2map(byteutil.Alphabet(DNA.AllLetters()))
abRNAredundant = slice2map(byteutil.Alphabet(RNAredundant.AllLetters()))
abRNA = slice2map(byteutil.Alphabet(RNA.AllLetters()))
}
// AlphabetGuessSeqLengthThreshold is the length of sequence prefix of the first FASTA record
// based which FastaRecord guesses the sequence type. 0 for whole seq
var AlphabetGuessSeqLengthThreshold = 10000
// GuessAlphabet guesses alphabet by given
func GuessAlphabet(seqs []byte) *Alphabet {
if len(seqs) == 0 {
return Unlimit
}
var alphabetMap map[byte]bool
if AlphabetGuessSeqLengthThreshold == 0 || len(seqs) <= AlphabetGuessSeqLengthThreshold {
alphabetMap = slice2map(byteutil.Alphabet(seqs))
} else { // reduce guessing time
alphabetMap = slice2map(byteutil.Alphabet(seqs[0:AlphabetGuessSeqLengthThreshold]))
}
if isSubset(alphabetMap, abDNA) {
return DNA
}
if isSubset(alphabetMap, abRNA) {
return RNA
}
if isSubset(alphabetMap, abDNAredundant) {
return DNAredundant
}
if isSubset(alphabetMap, abRNAredundant) {
return RNAredundant
}
if isSubset(alphabetMap, abProtein) {
return Protein
}
return Unlimit
}
// GuessAlphabetLessConservatively change DNA to DNAredundant and RNA to RNAredundant
func GuessAlphabetLessConservatively(seqs []byte) *Alphabet {
ab := GuessAlphabet(seqs)
if ab == DNA {
return DNAredundant
}
if ab == RNA {
return RNAredundant
}
return ab
}
func isSubset(query, subject map[byte]bool) bool {
for b := range query {
if _, ok := subject[b]; !ok {
return false
}
}
return true
}
func slice2map(s []byte) map[byte]bool {
m := make(map[byte]bool)
for _, b := range s {
m[b] = true
}
return m
}
|