1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
|
// Copyright 2012, Google Inc. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// cache implements a LRU cache. The implementation borrows heavily
// from SmallLRUCache (originally by Nathan Schrenk). The object
// maintains a doubly-linked list of elements. When an element is
// accessed it is promoted to the head of the list, and when space is
// needed the element at the tail of the list (the least recently used
// element) is evicted.
package cache
import (
"container/list"
"fmt"
"sync"
"time"
)
// LRUCache is a typical LRU cache implementation. If the cache
// reaches the capacity, the least recently used item is deleted from
// the cache. Note the capacity is not the number of items, but the
// total sum of the Size() of each item.
type LRUCache struct {
mu sync.Mutex
// list & table of *entry objects
list *list.List
table map[string]*list.Element
// Our current size. Obviously a gross simplification and
// low-grade approximation.
size int64
// How much we are limiting the cache to.
capacity int64
}
// Value is the interface values that go into LRUCache need to satisfy
type Value interface {
// Size returns how big this value is.
Size() int
}
// Item is what is stored in the cache
type Item struct {
Key string
Value Value
}
type entry struct {
key string
value Value
size int64
time_accessed time.Time
}
// NewLRUCache creates a new empty cache with the given capacity.
func NewLRUCache(capacity int64) *LRUCache {
return &LRUCache{
list: list.New(),
table: make(map[string]*list.Element),
capacity: capacity,
}
}
// Get returns a value from the cache, and marks the entry as most
// recently used.
func (lru *LRUCache) Get(key string) (v Value, ok bool) {
lru.mu.Lock()
defer lru.mu.Unlock()
element := lru.table[key]
if element == nil {
return nil, false
}
lru.moveToFront(element)
return element.Value.(*entry).value, true
}
// Set sets a value in the cache.
func (lru *LRUCache) Set(key string, value Value) {
lru.mu.Lock()
defer lru.mu.Unlock()
if element := lru.table[key]; element != nil {
lru.updateInplace(element, value)
} else {
lru.addNew(key, value)
}
}
// SetIfAbsent will set the value in the cache if not present. If the
// value exists in the cache, we don't set it.
func (lru *LRUCache) SetIfAbsent(key string, value Value) {
lru.mu.Lock()
defer lru.mu.Unlock()
if element := lru.table[key]; element != nil {
lru.moveToFront(element)
} else {
lru.addNew(key, value)
}
}
// Delete removes an entry from the cache, and returns if the entry existed.
func (lru *LRUCache) Delete(key string) bool {
lru.mu.Lock()
defer lru.mu.Unlock()
element := lru.table[key]
if element == nil {
return false
}
lru.list.Remove(element)
delete(lru.table, key)
lru.size -= element.Value.(*entry).size
return true
}
// Clear will clear the entire cache.
func (lru *LRUCache) Clear() {
lru.mu.Lock()
defer lru.mu.Unlock()
lru.list.Init()
lru.table = make(map[string]*list.Element)
lru.size = 0
}
// SetCapacity will set the capacity of the cache. If the capacity is
// smaller, and the current cache size exceed that capacity, the cache
// will be shrank.
func (lru *LRUCache) SetCapacity(capacity int64) {
lru.mu.Lock()
defer lru.mu.Unlock()
lru.capacity = capacity
lru.checkCapacity()
}
// Stats returns a few stats on the cache.
func (lru *LRUCache) Stats() (length, size, capacity int64, oldest time.Time) {
lru.mu.Lock()
defer lru.mu.Unlock()
if lastElem := lru.list.Back(); lastElem != nil {
oldest = lastElem.Value.(*entry).time_accessed
}
return int64(lru.list.Len()), lru.size, lru.capacity, oldest
}
// StatsJSON returns stats as a JSON object in a string.
func (lru *LRUCache) StatsJSON() string {
if lru == nil {
return "{}"
}
l, s, c, o := lru.Stats()
return fmt.Sprintf("{\"Length\": %v, \"Size\": %v, \"Capacity\": %v, \"OldestAccess\": \"%v\"}", l, s, c, o)
}
// Length returns how many elements are in the cache
func (lru *LRUCache) Length() int64 {
lru.mu.Lock()
defer lru.mu.Unlock()
return int64(lru.list.Len())
}
// Size returns the sum of the objects' Size() method.
func (lru *LRUCache) Size() int64 {
lru.mu.Lock()
defer lru.mu.Unlock()
return lru.size
}
// Capacity returns the cache maximum capacity.
func (lru *LRUCache) Capacity() int64 {
lru.mu.Lock()
defer lru.mu.Unlock()
return lru.capacity
}
// Oldest returns the insertion time of the oldest element in the cache,
// or a IsZero() time if cache is empty.
func (lru *LRUCache) Oldest() (oldest time.Time) {
lru.mu.Lock()
defer lru.mu.Unlock()
if lastElem := lru.list.Back(); lastElem != nil {
oldest = lastElem.Value.(*entry).time_accessed
}
return
}
// Keys returns all the keys for the cache, ordered from most recently
// used to last recently used.
func (lru *LRUCache) Keys() []string {
lru.mu.Lock()
defer lru.mu.Unlock()
keys := make([]string, 0, lru.list.Len())
for e := lru.list.Front(); e != nil; e = e.Next() {
keys = append(keys, e.Value.(*entry).key)
}
return keys
}
// Items returns all the values for the cache, ordered from most recently
// used to last recently used.
func (lru *LRUCache) Items() []Item {
lru.mu.Lock()
defer lru.mu.Unlock()
items := make([]Item, 0, lru.list.Len())
for e := lru.list.Front(); e != nil; e = e.Next() {
v := e.Value.(*entry)
items = append(items, Item{Key: v.key, Value: v.value})
}
return items
}
func (lru *LRUCache) updateInplace(element *list.Element, value Value) {
valueSize := int64(value.Size())
sizeDiff := valueSize - element.Value.(*entry).size
element.Value.(*entry).value = value
element.Value.(*entry).size = valueSize
lru.size += sizeDiff
lru.moveToFront(element)
lru.checkCapacity()
}
func (lru *LRUCache) moveToFront(element *list.Element) {
lru.list.MoveToFront(element)
element.Value.(*entry).time_accessed = time.Now()
}
func (lru *LRUCache) addNew(key string, value Value) {
newEntry := &entry{key, value, int64(value.Size()), time.Now()}
element := lru.list.PushFront(newEntry)
lru.table[key] = element
lru.size += newEntry.size
lru.checkCapacity()
}
func (lru *LRUCache) checkCapacity() {
// Partially duplicated from Delete
for lru.size > lru.capacity {
delElem := lru.list.Back()
delValue := delElem.Value.(*entry)
lru.list.Remove(delElem)
delete(lru.table, delValue.key)
lru.size -= delValue.size
}
}
|