1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
|
// Copyright 2021 The Sigstore Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package cryptoutils
import (
"crypto"
"crypto/ecdsa"
"crypto/ed25519"
"crypto/elliptic"
"crypto/rand"
"crypto/rsa"
"crypto/x509"
"encoding/pem"
"strings"
"testing"
"github.com/google/go-cmp/cmp"
)
func verifyPublicKeyPEMRoundtrip(t *testing.T, pub crypto.PublicKey) {
t.Helper()
pemBytes, err := MarshalPublicKeyToPEM(pub)
if err != nil {
t.Fatalf("MarshalPublicKeyToPEM returned error: %v", err)
}
rtPub, err := UnmarshalPEMToPublicKey(pemBytes)
if err != nil {
t.Fatalf("UnmarshalPEMToPublicKey returned error: %v", err)
}
if d := cmp.Diff(pub, rtPub); d != "" {
t.Errorf("round-tripped public key was malformed (-before +after): %s", d)
}
}
func TestECDSAPublicKeyPEMRoundtrip(t *testing.T) {
t.Parallel()
priv, err := ecdsa.GenerateKey(elliptic.P256(), rand.Reader)
if err != nil {
t.Fatalf("ecdsa.GenerateKey failed: %v", err)
}
verifyPublicKeyPEMRoundtrip(t, priv.Public())
}
func TestEd25519PublicKeyPEMRoundtrip(t *testing.T) {
t.Parallel()
pub, _, err := ed25519.GenerateKey(rand.Reader)
if err != nil {
t.Fatalf("ed25519.GenerateKey failed: %v", err)
}
verifyPublicKeyPEMRoundtrip(t, pub)
}
func TestRSAPublicKeyPEMRoundtrip(t *testing.T) {
t.Parallel()
priv, err := rsa.GenerateKey(rand.Reader, 2048)
if err != nil {
t.Fatalf("rsa.GenerateKey failed: %v", err)
}
verifyPublicKeyPEMRoundtrip(t, priv.Public())
}
func TestSKIDRSA(t *testing.T) {
priv, err := rsa.GenerateKey(rand.Reader, 2048)
if err != nil {
t.Fatalf("rsa.GenerateKey failed: %v", err)
}
skid, err := SKID(priv.Public())
if err != nil {
t.Fatalf("SKID failed: %v", err)
}
// Expect SKID is 160 bits (20 bytes)
if len(skid) != 20 {
t.Fatalf("SKID failed: %v", skid)
}
}
func TestSKIDECDSA(t *testing.T) {
priv, err := ecdsa.GenerateKey(elliptic.P256(), rand.Reader)
if err != nil {
t.Fatalf("ecdsa.GenerateKey failed: %v", err)
}
skid, err := SKID(priv.Public())
if err != nil {
t.Fatalf("SKID failed: %v", err)
}
// Expect SKID is 160 bits (20 bytes)
if len(skid) != 20 {
t.Fatalf("SKID failed: %v", skid)
}
}
func TestSKIDED25519(t *testing.T) {
pub, _, err := ed25519.GenerateKey(rand.Reader)
if err != nil {
t.Fatalf("ed25519.GenerateKey failed: %v", err)
}
skid, err := SKID(pub)
if err != nil {
t.Fatalf("SKID failed: %v", err)
}
// Expect SKID is 160 bits (20 bytes)
if len(skid) != 20 {
t.Fatalf("SKID failed: %v", skid)
}
}
func TestEqualKeys(t *testing.T) {
// Test RSA (success and failure)
privRsa, err := rsa.GenerateKey(rand.Reader, 2048)
if err != nil {
t.Fatalf("rsa.GenerateKey failed: %v", err)
}
privRsa2, err := rsa.GenerateKey(rand.Reader, 2048)
if err != nil {
t.Fatalf("rsa.GenerateKey failed: %v", err)
}
if err := EqualKeys(privRsa.Public(), privRsa.Public()); err != nil {
t.Fatalf("unexpected error for rsa equality, got %v", err)
}
if err := EqualKeys(privRsa.Public(), privRsa2.Public()); err == nil || !strings.Contains(err.Error(), "rsa public keys are not equal") {
t.Fatalf("expected error for different rsa keys, got %v", err)
}
// Test ECDSA (success and failure)
privEcdsa, err := ecdsa.GenerateKey(elliptic.P256(), rand.Reader)
if err != nil {
t.Fatalf("ecdsa.GenerateKey failed: %v", err)
}
privEcdsa2, err := ecdsa.GenerateKey(elliptic.P256(), rand.Reader)
if err != nil {
t.Fatalf("ecdsa.GenerateKey failed: %v", err)
}
if err := EqualKeys(privEcdsa.Public(), privEcdsa.Public()); err != nil {
t.Fatalf("unexpected error for ecdsa equality, got %v", err)
}
if err := EqualKeys(privEcdsa.Public(), privEcdsa2.Public()); err == nil || !strings.Contains(err.Error(), "ecdsa public keys are not equal") {
t.Fatalf("expected error for different ecdsa keys, got %v", err)
}
// Test ED25519 (success and failure)
pubEd, _, err := ed25519.GenerateKey(rand.Reader)
if err != nil {
t.Fatalf("ed25519.GenerateKey failed: %v", err)
}
pubEd2, _, err := ed25519.GenerateKey(rand.Reader)
if err != nil {
t.Fatalf("ed25519.GenerateKey failed: %v", err)
}
if err := EqualKeys(pubEd, pubEd); err != nil {
t.Fatalf("unexpected error for ed25519 equality, got %v", err)
}
if err := EqualKeys(pubEd, pubEd2); err == nil || !strings.Contains(err.Error(), "ed25519 public keys are not equal") {
t.Fatalf("expected error for different ed25519 keys, got %v", err)
}
// Keys of different type are not equal
if err := EqualKeys(privRsa.Public(), pubEd); err == nil || !strings.Contains(err.Error(), "are not equal") {
t.Fatalf("expected error for different key types, got %v", err)
}
// Fails with unexpected key type
type PublicKey struct{}
if err := EqualKeys(PublicKey{}, PublicKey{}); err == nil || err.Error() != "unsupported key type" {
t.Fatalf("expected error for unsupported key type, got %v", err)
}
}
func TestValidatePubKeyUnsupported(t *testing.T) {
// Fails with unexpected key type
type PublicKey struct{}
err := ValidatePubKey(PublicKey{})
if err == nil || err.Error() != "unsupported public key type" {
t.Errorf("expected unsupported public key type, got %v", err)
}
}
func TestValidatePubKeyRsa(t *testing.T) {
t.Skip("Validations disabled for Debian")
// Validate common RSA key sizes
for _, bits := range []int{2048, 3072, 4096} {
priv, err := rsa.GenerateKey(rand.Reader, bits)
if err != nil {
t.Fatalf("rsa.GenerateKey failed: %v", err)
}
if err := ValidatePubKey(priv.Public()); err != nil {
t.Errorf("unexpected error validating public key: %v", err)
}
}
// Fails with small key size
priv, err := rsa.GenerateKey(rand.Reader, 1024)
if err != nil {
t.Fatalf("rsa.GenerateKey failed: %v", err)
}
if err := ValidatePubKey(priv.Public()); err == nil || err.Error() != "key too small: 1024" {
t.Errorf("expected rsa key size too small, got %v", err)
}
// Fails with large key size
priv, err = rsa.GenerateKey(rand.Reader, 5000)
if err != nil {
t.Fatalf("rsa.GenerateKey failed: %v", err)
}
if err := ValidatePubKey(priv.Public()); err == nil || err.Error() != "key too large: 5000 > 4096" {
t.Errorf("expected rsa key size too large, got %v", err)
}
// Fails with key size that's not a multiple of 8
priv, err = rsa.GenerateKey(rand.Reader, 4095)
if err != nil {
t.Fatalf("rsa.GenerateKey failed: %v", err)
}
if err := ValidatePubKey(priv.Public()); err == nil || err.Error() != "key length wasn't a multiple of 8: 4095" {
t.Errorf("expected rsa key multiple error, got %v", err)
}
}
func TestValidatePubKeyEcdsa(t *testing.T) {
for _, curve := range []elliptic.Curve{elliptic.P256(), elliptic.P384(), elliptic.P521()} {
priv, err := ecdsa.GenerateKey(curve, rand.Reader)
if err != nil {
t.Fatalf("ecdsa.GenerateKey failed: %v", err)
}
if err := ValidatePubKey(priv.Public()); err != nil {
t.Errorf("unexpected error validating public key: %v", err)
}
}
// Fails with smalller curve
priv, err := ecdsa.GenerateKey(elliptic.P224(), rand.Reader)
if err != nil {
t.Fatalf("ecdsa.GenerateKey failed: %v", err)
}
if err := ValidatePubKey(priv.Public()); err == nil || err.Error() != "unsupported ec curve, expected NIST P-256, P-384, or P-521" {
t.Errorf("expected unsupported curve, got %v", err)
}
// Fails with unknown curve
err = ValidatePubKey(&ecdsa.PublicKey{})
if err == nil || err.Error() != "unexpected ec curve" {
t.Errorf("expected unexpected curve, got %v", err)
}
}
func TestValidatePubKeyEd25519(t *testing.T) {
pub, _, err := ed25519.GenerateKey(rand.Reader)
if err != nil {
t.Fatalf("ed25519.GenerateKey failed: %v", err)
}
if err := ValidatePubKey(pub); err != nil {
t.Errorf("unexpected error validating public key: %v", err)
}
// Only success, ED25519 keys do not support customization
}
func TestUnmarshalPEMToPublicKey(t *testing.T) {
// test PKIX PEM-encoded public keys
priv, err := rsa.GenerateKey(rand.Reader, 2048)
if err != nil {
t.Fatalf("rsa.GenerateKey failed: %v", err)
}
pkixPubKey, err := x509.MarshalPKIXPublicKey(priv.Public())
if err != nil {
t.Fatalf("x509.MarshalPKIXPublicKey failed: %v", err)
}
pkixPEMBlock := pem.EncodeToMemory(&pem.Block{
Type: "PUBLIC KEY",
Bytes: pkixPubKey,
})
k, err := UnmarshalPEMToPublicKey(pkixPEMBlock)
if err != nil {
t.Fatalf("UnmarshalPEMToPublicKey for PKIX failed: %v", err)
}
if EqualKeys(priv.Public(), k) != nil {
t.Fatalf("public keys for PKIX are not equal")
}
// test PKCS#1 PEM-encoded RSA public keys
priv, err = rsa.GenerateKey(rand.Reader, 2048)
if err != nil {
t.Fatalf("rsa.GenerateKey failed: %v", err)
}
rsaPubKey := x509.MarshalPKCS1PublicKey(&priv.PublicKey)
pkcs1PEMBlock := pem.EncodeToMemory(&pem.Block{
Type: "RSA PUBLIC KEY",
Bytes: rsaPubKey,
})
k, err = UnmarshalPEMToPublicKey(pkcs1PEMBlock)
if err != nil {
t.Fatalf("UnmarshalPEMToPublicKey for PKCS#1 failed: %v", err)
}
if EqualKeys(priv.Public(), k) != nil {
t.Fatalf("public keys for PKCS1 are not equal")
}
// test other PEM formats return an error
invalidPEMBlock := pem.EncodeToMemory(&pem.Block{
Type: "EC PUBLIC KEY",
Bytes: rsaPubKey,
})
_, err = UnmarshalPEMToPublicKey(invalidPEMBlock)
if err == nil || !strings.Contains(err.Error(), "unknown Public key PEM file type") {
t.Fatalf("expected error unmarshalling invalid PEM block, got: %v", err)
}
}
|