File: privatekey_test.go

package info (click to toggle)
golang-github-sigstore-sigstore 1.9.5-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 2,052 kB
  • sloc: makefile: 87; sh: 45
file content (296 lines) | stat: -rw-r--r-- 9,444 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
// Copyright 2021 The Sigstore Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

package cryptoutils

import (
	"crypto"
	"crypto/ecdsa"
	"crypto/ed25519"
	"crypto/elliptic"
	"crypto/rand"
	"crypto/rsa"
	"crypto/x509"
	"encoding/pem"
	"strings"
	"testing"

	"github.com/google/go-cmp/cmp"
)

func verifyRSAKeyPEMs(t *testing.T, privPEM, pubPEM []byte, expectedKeyLengthBits int, testPassFunc PassFunc) {
	t.Helper()

	if priv, err := UnmarshalPEMToPrivateKey(privPEM, testPassFunc); err != nil {
		t.Errorf("UnmarshalPEMToPrivateKey returned error: %v", err)
	} else if rsaPriv, ok := priv.(*rsa.PrivateKey); !ok {
		t.Errorf("expected unmarshaled key to be of type *rsa.PrivateKey, was %T", priv)
	} else if rsaPriv.Size() != expectedKeyLengthBits/8 {
		t.Errorf("private key size was %d, expected %d", rsaPriv.Size(), expectedKeyLengthBits/8)
	}

	if pub, err := UnmarshalPEMToPublicKey(pubPEM); err != nil {
		t.Errorf("UnmarshalPEMToPublicKey returned error: %v", err)
	} else if rsaPub, ok := pub.(*rsa.PublicKey); !ok {
		t.Errorf("expected unmarshaled public key to be of type *rsa.PublicKey, was %T", pub)
	} else if rsaPub.Size() != expectedKeyLengthBits/8 {
		t.Errorf("public key size was %d, expected %d", rsaPub.Size(), expectedKeyLengthBits/8)
	}
}

func TestGeneratePEMEncodedRSAKeyPair(t *testing.T) {
	t.Parallel()

	const testKeyBits = 2048

	testCases := []struct {
		name            string
		initialPassFunc PassFunc
		goodPFs         []PassFunc
		badPFs          []PassFunc
	}{
		{
			name:            "encrypted",
			initialPassFunc: StaticPasswordFunc([]byte("TestGenerateEncryptedRSAKeyPair password")),
			badPFs:          []PassFunc{SkipPassword, nil},
		},
		{
			name:            "nil pass func",
			initialPassFunc: nil,
			goodPFs:         []PassFunc{SkipPassword, nil},
		},
		{
			name:            "SkipPassword func",
			initialPassFunc: SkipPassword,
			goodPFs:         []PassFunc{SkipPassword, nil},
		},
	}
	for _, tc := range testCases {
		tc := tc
		t.Run(tc.name, func(t *testing.T) {
			t.Parallel()
			privPEM, pubPEM, err := GeneratePEMEncodedRSAKeyPair(testKeyBits, tc.initialPassFunc)
			if err != nil {
				t.Fatalf("GeneratePEMEncodedRSAKeyPair returned error: %v", err)
			}

			for _, badPF := range tc.badPFs {
				if priv, err := UnmarshalPEMToPrivateKey(privPEM, SkipPassword); err == nil {
					t.Errorf("UnmarshalPEMToPrivateKey(pf=%v) should have returned error, got: %v", badPF, priv)
				}
			}
			for _, goodPF := range tc.goodPFs {
				if _, err := UnmarshalPEMToPrivateKey(privPEM, goodPF); err != nil {
					t.Errorf("UnmarshalPEMToPrivateKey(pf=%v) returned error: %v", goodPF, err)
				}
			}
			verifyRSAKeyPEMs(t, privPEM, pubPEM, testKeyBits, tc.initialPassFunc)
		})
	}
}

func verifyECDSAKeyPEMs(t *testing.T, privPEM, pubPEM []byte, expectedCurve elliptic.Curve, testPassFunc PassFunc) {
	t.Helper()

	if priv, err := UnmarshalPEMToPrivateKey(privPEM, testPassFunc); err != nil {
		t.Errorf("UnmarshalPEMToPrivateKey returned error: %v", err)
	} else if ecdsaPriv, ok := priv.(*ecdsa.PrivateKey); !ok {
		t.Errorf("expected unmarshaled key to be of type *ecdsa.PrivateKey, was %T", priv)
	} else if ecdsaPriv.Curve != expectedCurve {
		t.Errorf("expected elliptic curve %v, got %d", expectedCurve, ecdsaPriv.Curve)
	}

	if pub, err := UnmarshalPEMToPublicKey(pubPEM); err != nil {
		t.Errorf("UnmarshalPEMToPublicKey returned error: %v", err)
	} else if ecdsaPub, ok := pub.(*ecdsa.PublicKey); !ok {
		t.Errorf("expected unmarshaled key to be of type *ecdsa.PublicKey, was %T", pub)
	} else if ecdsaPub.Curve != expectedCurve {
		t.Errorf("expected elliptic curve %v, got %d", expectedCurve, ecdsaPub.Curve)
	}
}

func TestGeneratePEMEncodedECDSAKeyPair(t *testing.T) {
	t.Parallel()

	testCurve := elliptic.P256()

	testCases := []struct {
		name            string
		initialPassFunc PassFunc
		goodPFs         []PassFunc
		badPFs          []PassFunc
	}{
		{
			name:            "encrypted",
			initialPassFunc: StaticPasswordFunc([]byte("TestGenerateEncryptedRSAKeyPair password")),
			badPFs:          []PassFunc{SkipPassword, nil},
		},
		{
			name:            "nil pass func",
			initialPassFunc: nil,
			goodPFs:         []PassFunc{SkipPassword, nil},
		},
		{
			name:            "SkipPassword func",
			initialPassFunc: SkipPassword,
			goodPFs:         []PassFunc{SkipPassword, nil},
		},
	}
	for _, tc := range testCases {
		tc := tc
		t.Run(tc.name, func(t *testing.T) {
			t.Parallel()
			privPEM, pubPEM, err := GeneratePEMEncodedECDSAKeyPair(testCurve, tc.initialPassFunc)
			if err != nil {
				t.Fatalf("GeneratePEMEncodedRSAKeyPair returned error: %v", err)
			}

			for _, badPF := range tc.badPFs {
				if priv, err := UnmarshalPEMToPrivateKey(privPEM, SkipPassword); err == nil {
					t.Errorf("UnmarshalPEMToPrivateKey(pf=%v) should have returned error, got: %v", badPF, priv)
				}
			}
			for _, goodPF := range tc.goodPFs {
				if _, err := UnmarshalPEMToPrivateKey(privPEM, goodPF); err != nil {
					t.Errorf("UnmarshalPEMToPrivateKey(pf=%v) returned error: %v", goodPF, err)
				}
			}
			verifyECDSAKeyPEMs(t, privPEM, pubPEM, testCurve, tc.initialPassFunc)
		})
	}
}

func verifyPrivateKeyPEMRoundtrip(t *testing.T, pub crypto.PrivateKey) {
	t.Helper()
	pemBytes, err := MarshalPrivateKeyToPEM(pub)
	if err != nil {
		t.Fatalf("MarshalPrivateKeyToPEM returned error: %v", err)
	}
	rtPub, err := UnmarshalPEMToPrivateKey(pemBytes, nil)
	if err != nil {
		t.Fatalf("UnmarshalPEMToPrivateKey returned error: %v", err)
	}
	if d := cmp.Diff(pub, rtPub); d != "" {
		t.Errorf("round-tripped public key was malformed (-before +after): %s", d)
	}
}

func TestECDSAPrivateKeyPEMRoundtrip(t *testing.T) {
	t.Parallel()
	priv, err := ecdsa.GenerateKey(elliptic.P256(), rand.Reader)
	if err != nil {
		t.Fatalf("ecdsa.GenerateKey failed: %v", err)
	}
	verifyPrivateKeyPEMRoundtrip(t, priv)
}

func TestEd25519PrivateKeyPEMRoundtrip(t *testing.T) {
	t.Parallel()
	_, priv, err := ed25519.GenerateKey(rand.Reader)
	if err != nil {
		t.Fatalf("ed25519.GenerateKey failed: %v", err)
	}
	verifyPrivateKeyPEMRoundtrip(t, priv)
}

func TestRSAPrivateKeyPEMRoundtrip(t *testing.T) {
	t.Parallel()
	priv, err := rsa.GenerateKey(rand.Reader, 2048)
	if err != nil {
		t.Fatalf("rsa.GenerateKey failed: %v", err)
	}
	verifyPrivateKeyPEMRoundtrip(t, priv)
}

func TestUnmarshalPEMToPrivateKey(t *testing.T) {
	// test PKCS#8 PEM-encoded private keys
	priv, err := rsa.GenerateKey(rand.Reader, 2048)
	if err != nil {
		t.Fatalf("rsa.GenerateKey failed: %v", err)
	}
	pkcs8PrivateKey, err := x509.MarshalPKCS8PrivateKey(priv)
	if err != nil {
		t.Fatalf("x509.MarshalPKCS8PrivateKey failed: %v", err)
	}
	pkcs8PEMBlock := pem.EncodeToMemory(&pem.Block{
		Type:  "PRIVATE KEY",
		Bytes: pkcs8PrivateKey,
	})
	k, err := UnmarshalPEMToPrivateKey(pkcs8PEMBlock, nil)
	if err != nil {
		t.Fatalf("UnmarshalPEMToPrivateKey for PKCS#8 failed: %v", err)
	}
	if !priv.Equal(k) {
		t.Fatalf("private keys for PKCS#8 are not equal")
	}

	// test PKCS#1 PEM-encoded RSA private keys
	priv, err = rsa.GenerateKey(rand.Reader, 2048)
	if err != nil {
		t.Fatalf("rsa.GenerateKey failed: %v", err)
	}
	rsaPrivKey := x509.MarshalPKCS1PrivateKey(priv)
	pkcs1PEMBlock := pem.EncodeToMemory(&pem.Block{
		Type:  "RSA PRIVATE KEY",
		Bytes: rsaPrivKey,
	})
	k, err = UnmarshalPEMToPrivateKey(pkcs1PEMBlock, nil)
	if err != nil {
		t.Fatalf("UnmarshalPEMToPrivateKey for PKCS#1 failed: %v", err)
	}
	if !priv.Equal(k) {
		t.Fatalf("private keys for PKCS1 are not equal")
	}

	// test SEC 1 EC private keys
	ecdsaKey, err := ecdsa.GenerateKey(elliptic.P256(), rand.Reader)
	if err != nil {
		t.Fatalf("ecdsa.GenerateKey failed: %v", err)
	}
	ecPrivKey, err := x509.MarshalECPrivateKey(ecdsaKey)
	if err != nil {
		t.Fatalf("x509.MarshalECPrivateKey failed: %v", err)
	}
	ecPEMBlock := pem.EncodeToMemory(&pem.Block{
		Type:  "EC PRIVATE KEY",
		Bytes: ecPrivKey,
	})
	k, err = UnmarshalPEMToPrivateKey(ecPEMBlock, nil)
	if err != nil {
		t.Fatalf("UnmarshalPEMToPrivateKey for SEC 1 failed: %v", err)
	}
	if !ecdsaKey.Equal(k) {
		t.Fatalf("private keys for SEC 1 (EC) are not equal")
	}

	// test Sigstore formatted private keys
	privSigstorePEM, _, err := GeneratePEMEncodedECDSAKeyPair(elliptic.P256(), StaticPasswordFunc([]byte("pw")))
	if err != nil {
		t.Fatalf("GeneratePEMEncodedECDSAKeyPair failed: %v", err)
	}
	_, err = UnmarshalPEMToPrivateKey(privSigstorePEM, StaticPasswordFunc([]byte("pw")))
	if err != nil {
		t.Fatalf("UnmarshalPEMToPrivateKey for Sigstore encoded key failed: %v", err)
	}

	// test other PEM formats return an error
	invalidPEMBlock := pem.EncodeToMemory(&pem.Block{
		Type:  "RSA PUBLIC KEY",
		Bytes: rsaPrivKey,
	})
	_, err = UnmarshalPEMToPrivateKey(invalidPEMBlock, nil)
	if err == nil || !strings.Contains(err.Error(), "unknown private key PEM file type") {
		t.Fatalf("expected error unmarshalling invalid PEM block, got: %v", err)
	}
}