File: ecdsa.go

package info (click to toggle)
golang-github-sigstore-sigstore 1.9.5-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 2,052 kB
  • sloc: makefile: 87; sh: 45
file content (270 lines) | stat: -rw-r--r-- 8,606 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
//
// Copyright 2021 The Sigstore Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

package signature

import (
	"crypto"
	"crypto/ecdsa"
	"crypto/elliptic"
	"crypto/rand"
	"encoding/asn1"
	"errors"
	"fmt"
	"io"
	"math/big"

	"github.com/sigstore/sigstore/pkg/signature/options"
)

// checked on LoadSigner, LoadVerifier and SignMessage
var ecdsaSupportedHashFuncs = []crypto.Hash{
	crypto.SHA256,
	crypto.SHA512,
	crypto.SHA384,
	crypto.SHA224,
}

// checked on VerifySignature. Supports SHA1 verification.
var ecdsaSupportedVerifyHashFuncs = []crypto.Hash{
	crypto.SHA256,
	crypto.SHA512,
	crypto.SHA384,
	crypto.SHA224,
	crypto.SHA1,
}

// ECDSASigner is a signature.Signer that uses an Elliptic Curve DSA algorithm
type ECDSASigner struct {
	hashFunc crypto.Hash
	priv     *ecdsa.PrivateKey
}

// LoadECDSASigner calculates signatures using the specified private key and hash algorithm.
//
// hf must not be crypto.Hash(0).
func LoadECDSASigner(priv *ecdsa.PrivateKey, hf crypto.Hash) (*ECDSASigner, error) {
	if priv == nil {
		return nil, errors.New("invalid ECDSA private key specified")
	}

	if !isSupportedAlg(hf, ecdsaSupportedHashFuncs) {
		return nil, errors.New("invalid hash function specified")
	}

	return &ECDSASigner{
		priv:     priv,
		hashFunc: hf,
	}, nil
}

// SignMessage signs the provided message. If the message is provided,
// this method will compute the digest according to the hash function specified
// when the ECDSASigner was created.
//
// This function recognizes the following Options listed in order of preference:
//
// - WithRand()
//
// - WithDigest()
//
// - WithCryptoSignerOpts()
//
// All other options are ignored if specified.
func (e ECDSASigner) SignMessage(message io.Reader, opts ...SignOption) ([]byte, error) {
	digest, _, err := ComputeDigestForSigning(message, e.hashFunc, ecdsaSupportedHashFuncs, opts...)
	if err != nil {
		return nil, err
	}

	rand := selectRandFromOpts(opts...)

	return ecdsa.SignASN1(rand, e.priv, digest)
}

// Public returns the public key that can be used to verify signatures created by
// this signer.
func (e ECDSASigner) Public() crypto.PublicKey {
	if e.priv == nil {
		return nil
	}

	return e.priv.Public()
}

// PublicKey returns the public key that can be used to verify signatures created by
// this signer. As this value is held in memory, all options provided in arguments
// to this method are ignored.
func (e ECDSASigner) PublicKey(_ ...PublicKeyOption) (crypto.PublicKey, error) {
	return e.Public(), nil
}

// Sign computes the signature for the specified digest. If a source of entropy is
// given in rand, it will be used instead of the default value (rand.Reader from crypto/rand).
//
// If opts are specified, the hash function in opts.Hash should be the one used to compute
// digest. If opts are not specified, the value provided when the signer was created will be used instead.
func (e ECDSASigner) Sign(rand io.Reader, digest []byte, opts crypto.SignerOpts) ([]byte, error) {
	ecdsaOpts := []SignOption{options.WithDigest(digest), options.WithRand(rand)}
	if opts != nil {
		ecdsaOpts = append(ecdsaOpts, options.WithCryptoSignerOpts(opts))
	}

	return e.SignMessage(nil, ecdsaOpts...)
}

// ECDSAVerifier is a signature.Verifier that uses an Elliptic Curve DSA algorithm
type ECDSAVerifier struct {
	publicKey *ecdsa.PublicKey
	hashFunc  crypto.Hash
}

// LoadECDSAVerifier returns a Verifier that verifies signatures using the specified
// ECDSA public key and hash algorithm.
//
// hf must not be crypto.Hash(0).
func LoadECDSAVerifier(pub *ecdsa.PublicKey, hashFunc crypto.Hash) (*ECDSAVerifier, error) {
	if pub == nil {
		return nil, errors.New("invalid ECDSA public key specified")
	}

	if !isSupportedAlg(hashFunc, ecdsaSupportedHashFuncs) {
		return nil, errors.New("invalid hash function specified")
	}

	return &ECDSAVerifier{
		publicKey: pub,
		hashFunc:  hashFunc,
	}, nil
}

// PublicKey returns the public key that is used to verify signatures by
// this verifier. As this value is held in memory, all options provided in arguments
// to this method are ignored.
func (e ECDSAVerifier) PublicKey(_ ...PublicKeyOption) (crypto.PublicKey, error) {
	return e.publicKey, nil
}

// VerifySignature verifies the signature for the given message. Unless provided
// in an option, the digest of the message will be computed using the hash function specified
// when the ECDSAVerifier was created.
//
// This function returns nil if the verification succeeded, and an error message otherwise.
//
// This function recognizes the following Options listed in order of preference:
//
// - WithDigest()
//
// All other options are ignored if specified.
func (e ECDSAVerifier) VerifySignature(signature, message io.Reader, opts ...VerifyOption) error {
	if e.publicKey == nil {
		return errors.New("no public key set for ECDSAVerifier")
	}

	digest, _, err := ComputeDigestForVerifying(message, e.hashFunc, ecdsaSupportedVerifyHashFuncs, opts...)
	if err != nil {
		return err
	}

	if signature == nil {
		return errors.New("nil signature passed to VerifySignature")
	}

	sigBytes, err := io.ReadAll(signature)
	if err != nil {
		return fmt.Errorf("reading signature: %w", err)
	}

	// Without this check, VerifyASN1 panics on an invalid key.
	if !e.publicKey.IsOnCurve(e.publicKey.X, e.publicKey.Y) {
		return fmt.Errorf("invalid ECDSA public key for %s", e.publicKey.Params().Name)
	}

	asnParseTest := struct {
		R, S *big.Int
	}{}
	if _, err := asn1.Unmarshal(sigBytes, &asnParseTest); err == nil {
		if !ecdsa.VerifyASN1(e.publicKey, digest, sigBytes) {
			return errors.New("invalid signature when validating ASN.1 encoded signature")
		}
	} else {
		// deal with IEEE P1363 encoding of signatures
		if len(sigBytes) == 0 || len(sigBytes) > 132 || len(sigBytes)%2 != 0 {
			return errors.New("ecdsa: Invalid IEEE_P1363 encoded bytes")
		}
		r := new(big.Int).SetBytes(sigBytes[:len(sigBytes)/2])
		s := new(big.Int).SetBytes(sigBytes[len(sigBytes)/2:])
		if !ecdsa.Verify(e.publicKey, digest, r, s) {
			return errors.New("invalid signature when validating IEEE_P1363 encoded signature")
		}
	}

	return nil
}

// ECDSASignerVerifier is a signature.SignerVerifier that uses an Elliptic Curve DSA algorithm
type ECDSASignerVerifier struct {
	*ECDSASigner
	*ECDSAVerifier
}

// LoadECDSASignerVerifier creates a combined signer and verifier. This is a convenience object
// that simply wraps an instance of ECDSASigner and ECDSAVerifier.
func LoadECDSASignerVerifier(priv *ecdsa.PrivateKey, hf crypto.Hash) (*ECDSASignerVerifier, error) {
	signer, err := LoadECDSASigner(priv, hf)
	if err != nil {
		return nil, fmt.Errorf("initializing signer: %w", err)
	}
	verifier, err := LoadECDSAVerifier(&priv.PublicKey, hf)
	if err != nil {
		return nil, fmt.Errorf("initializing verifier: %w", err)
	}

	return &ECDSASignerVerifier{
		ECDSASigner:   signer,
		ECDSAVerifier: verifier,
	}, nil
}

// NewDefaultECDSASignerVerifier creates a combined signer and verifier using ECDSA.
//
// This creates a new ECDSA key using the P-256 curve and uses the SHA256 hashing algorithm.
func NewDefaultECDSASignerVerifier() (*ECDSASignerVerifier, *ecdsa.PrivateKey, error) {
	return NewECDSASignerVerifier(elliptic.P256(), rand.Reader, crypto.SHA256)
}

// NewECDSASignerVerifier creates a combined signer and verifier using ECDSA.
//
// This creates a new ECDSA key using the specified elliptic curve, entropy source, and hashing function.
func NewECDSASignerVerifier(curve elliptic.Curve, rand io.Reader, hashFunc crypto.Hash) (*ECDSASignerVerifier, *ecdsa.PrivateKey, error) {
	priv, err := ecdsa.GenerateKey(curve, rand)
	if err != nil {
		return nil, nil, err
	}

	sv, err := LoadECDSASignerVerifier(priv, hashFunc)
	if err != nil {
		return nil, nil, err
	}

	return sv, priv, nil
}

// PublicKey returns the public key that is used to verify signatures by
// this verifier. As this value is held in memory, all options provided in arguments
// to this method are ignored.
func (e ECDSASignerVerifier) PublicKey(_ ...PublicKeyOption) (crypto.PublicKey, error) {
	return e.publicKey, nil
}