1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
|
//
// Copyright 2021 The Sigstore Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package signature
import (
"crypto"
"crypto/ecdsa"
"crypto/elliptic"
"crypto/rand"
"encoding/asn1"
"errors"
"fmt"
"io"
"math/big"
"github.com/sigstore/sigstore/pkg/signature/options"
)
// checked on LoadSigner, LoadVerifier and SignMessage
var ecdsaSupportedHashFuncs = []crypto.Hash{
crypto.SHA256,
crypto.SHA512,
crypto.SHA384,
crypto.SHA224,
}
// checked on VerifySignature. Supports SHA1 verification.
var ecdsaSupportedVerifyHashFuncs = []crypto.Hash{
crypto.SHA256,
crypto.SHA512,
crypto.SHA384,
crypto.SHA224,
crypto.SHA1,
}
// ECDSASigner is a signature.Signer that uses an Elliptic Curve DSA algorithm
type ECDSASigner struct {
hashFunc crypto.Hash
priv *ecdsa.PrivateKey
}
// LoadECDSASigner calculates signatures using the specified private key and hash algorithm.
//
// hf must not be crypto.Hash(0).
func LoadECDSASigner(priv *ecdsa.PrivateKey, hf crypto.Hash) (*ECDSASigner, error) {
if priv == nil {
return nil, errors.New("invalid ECDSA private key specified")
}
if !isSupportedAlg(hf, ecdsaSupportedHashFuncs) {
return nil, errors.New("invalid hash function specified")
}
return &ECDSASigner{
priv: priv,
hashFunc: hf,
}, nil
}
// SignMessage signs the provided message. If the message is provided,
// this method will compute the digest according to the hash function specified
// when the ECDSASigner was created.
//
// This function recognizes the following Options listed in order of preference:
//
// - WithRand()
//
// - WithDigest()
//
// - WithCryptoSignerOpts()
//
// All other options are ignored if specified.
func (e ECDSASigner) SignMessage(message io.Reader, opts ...SignOption) ([]byte, error) {
digest, _, err := ComputeDigestForSigning(message, e.hashFunc, ecdsaSupportedHashFuncs, opts...)
if err != nil {
return nil, err
}
rand := selectRandFromOpts(opts...)
return ecdsa.SignASN1(rand, e.priv, digest)
}
// Public returns the public key that can be used to verify signatures created by
// this signer.
func (e ECDSASigner) Public() crypto.PublicKey {
if e.priv == nil {
return nil
}
return e.priv.Public()
}
// PublicKey returns the public key that can be used to verify signatures created by
// this signer. As this value is held in memory, all options provided in arguments
// to this method are ignored.
func (e ECDSASigner) PublicKey(_ ...PublicKeyOption) (crypto.PublicKey, error) {
return e.Public(), nil
}
// Sign computes the signature for the specified digest. If a source of entropy is
// given in rand, it will be used instead of the default value (rand.Reader from crypto/rand).
//
// If opts are specified, the hash function in opts.Hash should be the one used to compute
// digest. If opts are not specified, the value provided when the signer was created will be used instead.
func (e ECDSASigner) Sign(rand io.Reader, digest []byte, opts crypto.SignerOpts) ([]byte, error) {
ecdsaOpts := []SignOption{options.WithDigest(digest), options.WithRand(rand)}
if opts != nil {
ecdsaOpts = append(ecdsaOpts, options.WithCryptoSignerOpts(opts))
}
return e.SignMessage(nil, ecdsaOpts...)
}
// ECDSAVerifier is a signature.Verifier that uses an Elliptic Curve DSA algorithm
type ECDSAVerifier struct {
publicKey *ecdsa.PublicKey
hashFunc crypto.Hash
}
// LoadECDSAVerifier returns a Verifier that verifies signatures using the specified
// ECDSA public key and hash algorithm.
//
// hf must not be crypto.Hash(0).
func LoadECDSAVerifier(pub *ecdsa.PublicKey, hashFunc crypto.Hash) (*ECDSAVerifier, error) {
if pub == nil {
return nil, errors.New("invalid ECDSA public key specified")
}
if !isSupportedAlg(hashFunc, ecdsaSupportedHashFuncs) {
return nil, errors.New("invalid hash function specified")
}
return &ECDSAVerifier{
publicKey: pub,
hashFunc: hashFunc,
}, nil
}
// PublicKey returns the public key that is used to verify signatures by
// this verifier. As this value is held in memory, all options provided in arguments
// to this method are ignored.
func (e ECDSAVerifier) PublicKey(_ ...PublicKeyOption) (crypto.PublicKey, error) {
return e.publicKey, nil
}
// VerifySignature verifies the signature for the given message. Unless provided
// in an option, the digest of the message will be computed using the hash function specified
// when the ECDSAVerifier was created.
//
// This function returns nil if the verification succeeded, and an error message otherwise.
//
// This function recognizes the following Options listed in order of preference:
//
// - WithDigest()
//
// All other options are ignored if specified.
func (e ECDSAVerifier) VerifySignature(signature, message io.Reader, opts ...VerifyOption) error {
if e.publicKey == nil {
return errors.New("no public key set for ECDSAVerifier")
}
digest, _, err := ComputeDigestForVerifying(message, e.hashFunc, ecdsaSupportedVerifyHashFuncs, opts...)
if err != nil {
return err
}
if signature == nil {
return errors.New("nil signature passed to VerifySignature")
}
sigBytes, err := io.ReadAll(signature)
if err != nil {
return fmt.Errorf("reading signature: %w", err)
}
// Without this check, VerifyASN1 panics on an invalid key.
if !e.publicKey.IsOnCurve(e.publicKey.X, e.publicKey.Y) {
return fmt.Errorf("invalid ECDSA public key for %s", e.publicKey.Params().Name)
}
asnParseTest := struct {
R, S *big.Int
}{}
if _, err := asn1.Unmarshal(sigBytes, &asnParseTest); err == nil {
if !ecdsa.VerifyASN1(e.publicKey, digest, sigBytes) {
return errors.New("invalid signature when validating ASN.1 encoded signature")
}
} else {
// deal with IEEE P1363 encoding of signatures
if len(sigBytes) == 0 || len(sigBytes) > 132 || len(sigBytes)%2 != 0 {
return errors.New("ecdsa: Invalid IEEE_P1363 encoded bytes")
}
r := new(big.Int).SetBytes(sigBytes[:len(sigBytes)/2])
s := new(big.Int).SetBytes(sigBytes[len(sigBytes)/2:])
if !ecdsa.Verify(e.publicKey, digest, r, s) {
return errors.New("invalid signature when validating IEEE_P1363 encoded signature")
}
}
return nil
}
// ECDSASignerVerifier is a signature.SignerVerifier that uses an Elliptic Curve DSA algorithm
type ECDSASignerVerifier struct {
*ECDSASigner
*ECDSAVerifier
}
// LoadECDSASignerVerifier creates a combined signer and verifier. This is a convenience object
// that simply wraps an instance of ECDSASigner and ECDSAVerifier.
func LoadECDSASignerVerifier(priv *ecdsa.PrivateKey, hf crypto.Hash) (*ECDSASignerVerifier, error) {
signer, err := LoadECDSASigner(priv, hf)
if err != nil {
return nil, fmt.Errorf("initializing signer: %w", err)
}
verifier, err := LoadECDSAVerifier(&priv.PublicKey, hf)
if err != nil {
return nil, fmt.Errorf("initializing verifier: %w", err)
}
return &ECDSASignerVerifier{
ECDSASigner: signer,
ECDSAVerifier: verifier,
}, nil
}
// NewDefaultECDSASignerVerifier creates a combined signer and verifier using ECDSA.
//
// This creates a new ECDSA key using the P-256 curve and uses the SHA256 hashing algorithm.
func NewDefaultECDSASignerVerifier() (*ECDSASignerVerifier, *ecdsa.PrivateKey, error) {
return NewECDSASignerVerifier(elliptic.P256(), rand.Reader, crypto.SHA256)
}
// NewECDSASignerVerifier creates a combined signer and verifier using ECDSA.
//
// This creates a new ECDSA key using the specified elliptic curve, entropy source, and hashing function.
func NewECDSASignerVerifier(curve elliptic.Curve, rand io.Reader, hashFunc crypto.Hash) (*ECDSASignerVerifier, *ecdsa.PrivateKey, error) {
priv, err := ecdsa.GenerateKey(curve, rand)
if err != nil {
return nil, nil, err
}
sv, err := LoadECDSASignerVerifier(priv, hashFunc)
if err != nil {
return nil, nil, err
}
return sv, priv, nil
}
// PublicKey returns the public key that is used to verify signatures by
// this verifier. As this value is held in memory, all options provided in arguments
// to this method are ignored.
func (e ECDSASignerVerifier) PublicKey(_ ...PublicKeyOption) (crypto.PublicKey, error) {
return e.publicKey, nil
}
|