File: ssh.go

package info (click to toggle)
golang-github-smallstep-cli 0.15.16%2Bds-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 4,404 kB
  • sloc: sh: 512; makefile: 99
file content (462 lines) | stat: -rw-r--r-- 11,544 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package pemutil

import (
	"bytes"
	"crypto"
	"crypto/aes"
	"crypto/cipher"
	"crypto/ecdsa"
	"crypto/ed25519"
	"crypto/elliptic"
	"crypto/rand"
	"crypto/rsa"
	"encoding/binary"
	"encoding/pem"
	"fmt"
	"math/big"

	"github.com/pkg/errors"
	"github.com/smallstep/cli/crypto/randutil"
	"github.com/smallstep/cli/errs"
	"github.com/smallstep/cli/pkg/bcrypt_pbkdf"
	"github.com/smallstep/cli/ui"
	"github.com/smallstep/cli/utils"
	"golang.org/x/crypto/ssh"
)

const (
	sshMagic             = "openssh-key-v1\x00"
	sshDefaultKdf        = "bcrypt"
	sshDefaultCiphername = "aes256-ctr"
	sshDefaultKeyLength  = 32
	sshDefaultSaltLength = 16
	sshDefaultRounds     = 16
)

type openSSHPrivateKey struct {
	CipherName   string
	KdfName      string
	KdfOpts      string
	NumKeys      uint32
	PubKey       []byte
	PrivKeyBlock []byte
}

type openSSHPrivateKeyBlock struct {
	Check1  uint32
	Check2  uint32
	Keytype string
	Rest    []byte `ssh:"rest"`
}

// ParseOpenSSHPrivateKey parses a private key in OpenSSH PEM format.
//
// Implemented based on the documentation at
// https://github.com/openssh/openssh-portable/blob/master/PROTOCOL.key
//
// This method is based on the implementation at
// https://github.com/golang/crypto/blob/master/ssh/keys.go
func ParseOpenSSHPrivateKey(key []byte, opts ...Options) (crypto.PrivateKey, error) {
	// Populate options
	ctx := newContext("PEM")
	if err := ctx.apply(opts); err != nil {
		return nil, err
	}

	if len(key) < len(sshMagic) || string(key[:len(sshMagic)]) != sshMagic {
		return nil, errors.New("invalid openssh private key format")
	}
	remaining := key[len(sshMagic):]

	var w openSSHPrivateKey
	if err := ssh.Unmarshal(remaining, &w); err != nil {
		return nil, err
	}

	if w.KdfName != "none" || w.CipherName != "none" {
		if w.KdfName != sshDefaultKdf {
			return nil, errors.Errorf("cannot decode encrypted private keys with %s key derivative function", w.KdfName)
		}
		if w.CipherName != sshDefaultCiphername {
			return nil, errors.Errorf("cannot decode %s encrypted private keys", w.CipherName)
		}

		// Read kdf options.
		buf := bytes.NewReader([]byte(w.KdfOpts))

		var saltLength uint32
		if err := binary.Read(buf, binary.BigEndian, &saltLength); err != nil {
			return nil, errors.New("cannot decode encrypted private keys: bad format")
		}

		salt := make([]byte, saltLength)
		if err := binary.Read(buf, binary.BigEndian, &salt); err != nil {
			return nil, errors.New("cannot decode encrypted private keys: bad format")
		}

		var rounds uint32
		if err := binary.Read(buf, binary.BigEndian, &rounds); err != nil {
			return nil, errors.New("cannot decode encrypted private keys: bad format")
		}

		var err error
		var password []byte
		if len(ctx.password) > 0 {
			password = ctx.password
		} else {
			password, err = ui.PromptPassword(fmt.Sprintf("Please enter the password to decrypt %s", ctx.filename))
			if err != nil {
				return nil, err
			}
		}

		// Derive the cipher key used in the cipher.
		k, err := bcrypt_pbkdf.Key(password, salt, int(rounds), sshDefaultKeyLength+aes.BlockSize)
		if err != nil {
			return nil, errors.Wrap(err, "error deriving password")
		}

		// Decrypt the private key using the derived secret.
		dst := make([]byte, len(w.PrivKeyBlock))
		iv := k[sshDefaultKeyLength : sshDefaultKeyLength+aes.BlockSize]
		block, err := aes.NewCipher(k[:sshDefaultKeyLength])
		if err != nil {
			return nil, errors.Wrap(err, "error creating cipher")
		}

		stream := cipher.NewCTR(block, iv)
		stream.XORKeyStream(dst, w.PrivKeyBlock)
		w.PrivKeyBlock = dst
	}

	var pk1 openSSHPrivateKeyBlock
	if err := ssh.Unmarshal(w.PrivKeyBlock, &pk1); err != nil {
		if w.KdfName != "none" || w.CipherName != "none" {
			return nil, errors.New("incorrect passphrase supplied")
		}
		return nil, err
	}

	if pk1.Check1 != pk1.Check2 {
		if w.KdfName != "none" || w.CipherName != "none" {
			return nil, errors.New("incorrect passphrase supplied")
		}
		return nil, errors.New("error decoding key: check mismatch")
	}

	// we only handle ed25519 and rsa keys currently
	switch pk1.Keytype {
	case ssh.KeyAlgoRSA:
		// https://github.com/openssh/openssh-portable/blob/master/sshkey.c
		key := struct {
			N       *big.Int
			E       *big.Int
			D       *big.Int
			Iqmp    *big.Int
			P       *big.Int
			Q       *big.Int
			Comment string
			Pad     []byte `ssh:"rest"`
		}{}

		if err := ssh.Unmarshal(pk1.Rest, &key); err != nil {
			return nil, err
		}

		for i, b := range key.Pad {
			if int(b) != i+1 {
				return nil, errors.New("error decoding key: padding not as expected")
			}
		}

		pk := &rsa.PrivateKey{
			PublicKey: rsa.PublicKey{
				N: key.N,
				E: int(key.E.Int64()),
			},
			D:      key.D,
			Primes: []*big.Int{key.P, key.Q},
		}

		if err := pk.Validate(); err != nil {
			return nil, err
		}

		pk.Precompute()

		return pk, nil
	case ssh.KeyAlgoECDSA256, ssh.KeyAlgoECDSA384, ssh.KeyAlgoECDSA521:
		key := struct {
			Curve   string
			Pub     []byte
			D       *big.Int
			Comment string
			Pad     []byte `ssh:"rest"`
		}{}

		if err := ssh.Unmarshal(pk1.Rest, &key); err != nil {
			return nil, errors.Wrap(err, "error unmarshaling key")
		}

		for i, b := range key.Pad {
			if int(b) != i+1 {
				return nil, errors.New("error decoding key: padding not as expected")
			}
		}

		var curve elliptic.Curve
		switch key.Curve {
		case "nistp256":
			curve = elliptic.P256()
		case "nistp384":
			curve = elliptic.P384()
		case "nistp521":
			curve = elliptic.P521()
		default:
			return nil, errors.Errorf("error decoding key: unsupported elliptic curve %s", key.Curve)
		}

		N := curve.Params().N
		X, Y := elliptic.Unmarshal(curve, key.Pub)
		if X == nil || Y == nil {
			return nil, errors.New("error decoding key: failed to unmarshal public key")
		}

		if key.D.Cmp(N) >= 0 {
			return nil, errors.New("error decoding key: scalar is out of range")
		}

		x, y := curve.ScalarBaseMult(key.D.Bytes())
		if x.Cmp(X) != 0 || y.Cmp(Y) != 0 {
			return nil, errors.New("error decoding key: public key does not match private key")
		}

		return &ecdsa.PrivateKey{
			PublicKey: ecdsa.PublicKey{
				Curve: curve,
				X:     X,
				Y:     Y,
			},
			D: key.D,
		}, nil
	case ssh.KeyAlgoED25519:
		key := struct {
			Pub     []byte
			Priv    []byte
			Comment string
			Pad     []byte `ssh:"rest"`
		}{}

		if err := ssh.Unmarshal(pk1.Rest, &key); err != nil {
			return nil, err
		}

		for i, b := range key.Pad {
			if int(b) != i+1 {
				return nil, errors.New("error decoding key: padding not as expected")
			}
		}

		if len(key.Priv) != ed25519.PrivateKeySize {
			return nil, errors.New("private key unexpected length")
		}

		pk := ed25519.PrivateKey(make([]byte, ed25519.PrivateKeySize))
		copy(pk, key.Priv)
		return pk, nil
	default:
		return nil, errors.Errorf("unsupported key type %s", pk1.Keytype)
	}
}

// SerializeOpenSSHPrivateKey serialize a private key in the OpenSSH PEM format.
func SerializeOpenSSHPrivateKey(key crypto.PrivateKey, opts ...Options) (*pem.Block, error) {
	ctx := new(context)
	if err := ctx.apply(opts); err != nil {
		return nil, err
	}

	// Random check bytes.
	var check uint32
	if err := binary.Read(rand.Reader, binary.BigEndian, &check); err != nil {
		return nil, errors.Wrap(err, "error generating random check ")
	}

	w := openSSHPrivateKey{
		NumKeys: 1,
	}
	pk1 := openSSHPrivateKeyBlock{
		Check1: check,
		Check2: check,
	}

	var blockSize int
	if ctx.password == nil {
		w.CipherName = "none"
		w.KdfName = "none"
		blockSize = 8
	} else {
		w.CipherName = sshDefaultCiphername
		w.KdfName = sshDefaultKdf
		blockSize = aes.BlockSize
	}

	switch k := key.(type) {
	case *rsa.PrivateKey:
		E := new(big.Int).SetInt64(int64(k.PublicKey.E))
		// Marshal public key:
		// E and N are in reversed order in the public and private key.
		pubKey := struct {
			KeyType string
			E       *big.Int
			N       *big.Int
		}{
			ssh.KeyAlgoRSA,
			E, k.PublicKey.N,
		}
		w.PubKey = ssh.Marshal(pubKey)

		// Marshal private key.
		key := struct {
			N       *big.Int
			E       *big.Int
			D       *big.Int
			Iqmp    *big.Int
			P       *big.Int
			Q       *big.Int
			Comment string
		}{
			k.PublicKey.N, E,
			k.D, k.Precomputed.Qinv, k.Primes[0], k.Primes[1],
			ctx.comment,
		}
		pk1.Keytype = ssh.KeyAlgoRSA
		pk1.Rest = ssh.Marshal(key)
	case *ecdsa.PrivateKey:
		var curve, keyType string
		switch k.Curve.Params().Name {
		case "P-256":
			curve = "nistp256"
			keyType = ssh.KeyAlgoECDSA256
		case "P-384":
			curve = "nistp384"
			keyType = ssh.KeyAlgoECDSA384
		case "P-521":
			curve = "nistp521"
			keyType = ssh.KeyAlgoECDSA521
		default:
			return nil, errors.Errorf("error serializing key: unsupported curve %s", k.Curve.Params().Name)
		}

		pub := elliptic.Marshal(k.Curve, k.PublicKey.X, k.PublicKey.Y)

		// Marshal public key.
		pubKey := struct {
			KeyType string
			Curve   string
			Pub     []byte
		}{
			keyType, curve, pub,
		}
		w.PubKey = ssh.Marshal(pubKey)

		// Marshal private key.
		key := struct {
			Curve   string
			Pub     []byte
			D       *big.Int
			Comment string
		}{
			curve, pub, k.D,
			ctx.comment,
		}
		pk1.Keytype = keyType
		pk1.Rest = ssh.Marshal(key)
	case ed25519.PrivateKey:
		pub := make([]byte, ed25519.PublicKeySize)
		priv := make([]byte, ed25519.PrivateKeySize)
		copy(pub, k[ed25519.PublicKeySize:])
		copy(priv, k)

		// Marshal public key.
		pubKey := struct {
			KeyType string
			Pub     []byte
		}{
			ssh.KeyAlgoED25519, pub,
		}
		w.PubKey = ssh.Marshal(pubKey)

		// Marshal private key.
		key := struct {
			Pub     []byte
			Priv    []byte
			Comment string
		}{
			pub, priv,
			ctx.comment,
		}
		pk1.Keytype = ssh.KeyAlgoED25519
		pk1.Rest = ssh.Marshal(key)
	default:
		return nil, errors.Errorf("unsupported key type %T", k)
	}

	w.PrivKeyBlock = ssh.Marshal(pk1)

	// Add padding until the private key block matches the block size,
	// 16 with AES encryption, 8 without.
	for i, l := 0, len(w.PrivKeyBlock); (l+i)%blockSize != 0; i++ {
		w.PrivKeyBlock = append(w.PrivKeyBlock, byte(i+1))
	}

	if ctx.password != nil {
		// Create encryption key derivation the password.
		salt, err := randutil.Salt(sshDefaultSaltLength)
		if err != nil {
			return nil, err
		}

		buf := new(bytes.Buffer)
		binary.Write(buf, binary.BigEndian, uint32(sshDefaultSaltLength))
		binary.Write(buf, binary.BigEndian, salt)
		binary.Write(buf, binary.BigEndian, uint32(sshDefaultRounds))
		w.KdfOpts = buf.String()

		// Derive key to encrypt the private key block.
		k, err := bcrypt_pbkdf.Key(ctx.password, salt, sshDefaultRounds, sshDefaultKeyLength+aes.BlockSize)
		if err != nil {
			return nil, errors.Wrap(err, "error deriving decryption key")
		}

		// Encrypt the private key using the derived secret.
		dst := make([]byte, len(w.PrivKeyBlock))
		iv := k[sshDefaultKeyLength : sshDefaultKeyLength+aes.BlockSize]
		block, err := aes.NewCipher(k[:sshDefaultKeyLength])
		if err != nil {
			return nil, errors.Wrap(err, "error creating cipher")
		}

		stream := cipher.NewCTR(block, iv)
		stream.XORKeyStream(dst, w.PrivKeyBlock)
		w.PrivKeyBlock = dst
	}

	b := ssh.Marshal(w)
	block := &pem.Block{
		Type:  "OPENSSH PRIVATE KEY",
		Bytes: append([]byte(sshMagic), b...),
	}

	if ctx.filename != "" {
		if err := utils.WriteFile(ctx.filename, pem.EncodeToMemory(block), ctx.perm); err != nil {
			return nil, errs.FileError(err, ctx.filename)
		}
	}

	return block, nil
}