File: pkcs8.go

package info (click to toggle)
golang-github-smallstep-crypto 0.63.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 3,800 kB
  • sloc: sh: 66; makefile: 50
file content (353 lines) | stat: -rw-r--r-- 10,592 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
package pemutil

import (
	"crypto/aes"
	"crypto/cipher"
	"crypto/des"  //nolint:gosec // support for legacy keys
	"crypto/sha1" //nolint:gosec // support for legacy keys
	"crypto/sha256"
	"crypto/x509"
	"crypto/x509/pkix"
	"encoding/asn1"
	"encoding/pem"
	"hash"
	"io"

	"github.com/pkg/errors"
	"golang.org/x/crypto/pbkdf2"
)

// PBKDF2SaltSize is the default size of the salt for PBKDF2, 128-bit salt.
const PBKDF2SaltSize = 16

// PBKDF2Iterations is the default number of iterations for PBKDF2.
//
// 600k is the current OWASP recommendation (Dec 2022)
// https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html#pbkdf2
//
// Nist recommends at least 10k (800-63B), 1Password increased in 2023 the
// number of iterations from 100k to 650k.
const PBKDF2Iterations = 600000

// pkcs8 reflects an ASN.1, PKCS#8 PrivateKey. See
// ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-8/pkcs-8v1_2.asn
// and RFC 5208.
type pkcs8 struct {
	Version    int
	Algo       pkix.AlgorithmIdentifier
	PrivateKey []byte
	// optional attributes omitted.
}

type publicKeyInfo struct {
	Raw       asn1.RawContent
	Algo      pkix.AlgorithmIdentifier
	PublicKey asn1.BitString
}

// Encrypted pkcs8
// Based on https://github.com/youmark/pkcs8
// MIT license
type prfParam struct {
	Algo      asn1.ObjectIdentifier
	NullParam asn1.RawValue
}

type pbkdf2Params struct {
	Salt           []byte
	IterationCount int
	PrfParam       prfParam `asn1:"optional"`
}

type pbkdf2Algorithms struct {
	Algo         asn1.ObjectIdentifier
	PBKDF2Params pbkdf2Params
}

type pbkdf2Encs struct {
	EncryAlgo asn1.ObjectIdentifier
	IV        []byte
}

type pbes2Params struct {
	KeyDerivationFunc pbkdf2Algorithms
	EncryptionScheme  pbkdf2Encs
}

type encryptedlAlgorithmIdentifier struct {
	Algorithm  asn1.ObjectIdentifier
	Parameters pbes2Params
}

type encryptedPrivateKeyInfo struct {
	Algo       encryptedlAlgorithmIdentifier
	PrivateKey []byte
}

var (
	// key derivation functions
	oidPKCS5PBKDF2    = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 5, 12}
	oidPBES2          = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 5, 13}
	oidHMACWithSHA256 = asn1.ObjectIdentifier{1, 2, 840, 113549, 2, 9}

	// encryption
	oidAES128CBC = asn1.ObjectIdentifier{2, 16, 840, 1, 101, 3, 4, 1, 2}
	oidAES192CBC = asn1.ObjectIdentifier{2, 16, 840, 1, 101, 3, 4, 1, 22}
	oidAES256CBC = asn1.ObjectIdentifier{2, 16, 840, 1, 101, 3, 4, 1, 42}
	oidDESCBC    = asn1.ObjectIdentifier{1, 3, 14, 3, 2, 7}
	oidD3DESCBC  = asn1.ObjectIdentifier{1, 2, 840, 113549, 3, 7}
)

// rfc1423Algo holds a method for enciphering a PEM block.
type rfc1423Algo struct {
	cipher     x509.PEMCipher
	name       string
	cipherFunc func(key []byte) (cipher.Block, error)
	keySize    int
	blockSize  int
	identifier asn1.ObjectIdentifier
}

// rfc1423Algos holds a slice of the possible ways to encrypt a PEM
// block. The ivSize numbers were taken from the OpenSSL source.
var rfc1423Algos = []rfc1423Algo{{
	cipher:     x509.PEMCipherDES,
	name:       "DES-CBC",
	cipherFunc: des.NewCipher,
	keySize:    8,
	blockSize:  des.BlockSize,
	identifier: oidDESCBC,
}, {
	cipher:     x509.PEMCipher3DES,
	name:       "DES-EDE3-CBC",
	cipherFunc: des.NewTripleDESCipher,
	keySize:    24,
	blockSize:  des.BlockSize,
	identifier: oidD3DESCBC,
}, {
	cipher:     x509.PEMCipherAES128,
	name:       "AES-128-CBC",
	cipherFunc: aes.NewCipher,
	keySize:    16,
	blockSize:  aes.BlockSize,
	identifier: oidAES128CBC,
}, {
	cipher:     x509.PEMCipherAES192,
	name:       "AES-192-CBC",
	cipherFunc: aes.NewCipher,
	keySize:    24,
	blockSize:  aes.BlockSize,
	identifier: oidAES192CBC,
}, {
	cipher:     x509.PEMCipherAES256,
	name:       "AES-256-CBC",
	cipherFunc: aes.NewCipher,
	keySize:    32,
	blockSize:  aes.BlockSize,
	identifier: oidAES256CBC,
},
}

func cipherByKey(key x509.PEMCipher) *rfc1423Algo {
	for i := range rfc1423Algos {
		alg := &rfc1423Algos[i]
		if alg.cipher == key {
			return alg
		}
	}
	return nil
}

// deriveKey uses a key derivation function to stretch the password into a key
// with the number of bits our cipher requires. This algorithm was derived from
// the OpenSSL source.
func (c rfc1423Algo) deriveKey(password, salt []byte, h func() hash.Hash) []byte {
	return pbkdf2.Key(password, salt, PBKDF2Iterations, c.keySize, h)
}

// DecryptPEMBlock takes a password encrypted PEM block and the password used
// to encrypt it and returns a slice of decrypted DER encoded bytes.
//
// If the PEM blocks has the Proc-Type header set to "4,ENCRYPTED" it uses
// x509.DecryptPEMBlock to decrypt the block. If not it tries to decrypt the
// block using AES-128-CBC, AES-192-CBC, AES-256-CBC, DES, or 3DES using the
// key derived using PBKDF2 over the given password.
func DecryptPEMBlock(block *pem.Block, password []byte) ([]byte, error) {
	if block.Headers["Proc-Type"] == "4,ENCRYPTED" {
		return x509.DecryptPEMBlock(block, password) //nolint:staticcheck // support legacy use cases
	}

	// PKCS#8 header defined in RFC7468 section 11
	if block.Type == "ENCRYPTED PRIVATE KEY" {
		return DecryptPKCS8PrivateKey(block.Bytes, password)
	}

	return nil, errors.New("unsupported encrypted PEM")
}

// DecryptPKCS8PrivateKey takes a password encrypted private key using the
// PKCS#8 encoding and returns the decrypted data in PKCS#8 form. If an
// incorrect password is detected an x509.IncorrectPasswordError is returned.
// Because of deficiencies in the format, it's not always possible to detect an
// incorrect password. In these cases no error will be returned but the
// decrypted DER bytes will be random noise.
//
// It supports AES-128-CBC, AES-192-CBC, AES-256-CBC, DES, or 3DES encrypted
// data using the key derived with PBKDF2 over the given password.
func DecryptPKCS8PrivateKey(data, password []byte) ([]byte, error) {
	var pki encryptedPrivateKeyInfo
	if _, err := asn1.Unmarshal(data, &pki); err != nil {
		return nil, errors.Wrap(err, "failed to unmarshal private key")
	}

	if !pki.Algo.Algorithm.Equal(oidPBES2) {
		return nil, errors.New("unsupported encrypted PEM: only PBES2 is supported")
	}

	if !pki.Algo.Parameters.KeyDerivationFunc.Algo.Equal(oidPKCS5PBKDF2) {
		return nil, errors.New("unsupported encrypted PEM: only PBKDF2 is supported")
	}

	encParam := pki.Algo.Parameters.EncryptionScheme
	kdfParam := pki.Algo.Parameters.KeyDerivationFunc.PBKDF2Params

	iv := encParam.IV
	salt := kdfParam.Salt
	iter := kdfParam.IterationCount

	// pbkdf2 hash function
	keyHash := sha1.New
	if kdfParam.PrfParam.Algo.Equal(oidHMACWithSHA256) {
		keyHash = sha256.New
	}

	var symkey []byte
	var block cipher.Block
	var err error
	switch {
	// AES-128-CBC, AES-192-CBC, AES-256-CBC
	case encParam.EncryAlgo.Equal(oidAES128CBC):
		symkey = pbkdf2.Key(password, salt, iter, 16, keyHash)
		block, err = aes.NewCipher(symkey)
	case encParam.EncryAlgo.Equal(oidAES192CBC):
		symkey = pbkdf2.Key(password, salt, iter, 24, keyHash)
		block, err = aes.NewCipher(symkey)
	case encParam.EncryAlgo.Equal(oidAES256CBC):
		symkey = pbkdf2.Key(password, salt, iter, 32, keyHash)
		block, err = aes.NewCipher(symkey)
	// DES, TripleDES
	case encParam.EncryAlgo.Equal(oidDESCBC):
		symkey = pbkdf2.Key(password, salt, iter, 8, keyHash)
		block, err = des.NewCipher(symkey) //nolint:gosec // support for legacy keys
	case encParam.EncryAlgo.Equal(oidD3DESCBC):
		symkey = pbkdf2.Key(password, salt, iter, 24, keyHash)
		block, err = des.NewTripleDESCipher(symkey) //nolint:gosec // support for legacy keys
	default:
		return nil, errors.Errorf("unsupported encrypted PEM: unknown algorithm %v", encParam.EncryAlgo)
	}
	if err != nil {
		return nil, err
	}

	data = pki.PrivateKey
	mode := cipher.NewCBCDecrypter(block, iv)
	mode.CryptBlocks(data, data)

	// Blocks are padded using a scheme where the last n bytes of padding are all
	// equal to n. It can pad from 1 to blocksize bytes inclusive. See RFC 1423.
	// For example:
	//	[x y z 2 2]
	//	[x y 7 7 7 7 7 7 7]
	// If we detect a bad padding, we assume it is an invalid password.
	blockSize := block.BlockSize()
	dlen := len(data)
	if dlen == 0 || dlen%blockSize != 0 {
		return nil, errors.New("error decrypting PEM: invalid padding")
	}

	last := int(data[dlen-1])
	if dlen < last {
		return nil, x509.IncorrectPasswordError
	}
	if last == 0 || last > blockSize {
		return nil, x509.IncorrectPasswordError
	}
	for _, val := range data[dlen-last:] {
		if int(val) != last {
			return nil, x509.IncorrectPasswordError
		}
	}

	return data[:dlen-last], nil
}

// EncryptPKCS8PrivateKey returns a PEM block holding the given PKCS#8 encroded
// private key, encrypted with the specified algorithm and a PBKDF2 derived key
// from the given password.
func EncryptPKCS8PrivateKey(rand io.Reader, data, password []byte, alg x509.PEMCipher) (*pem.Block, error) {
	ciph := cipherByKey(alg)
	if ciph == nil {
		return nil, errors.Errorf("failed to encrypt PEM: unknown algorithm %v", alg)
	}

	salt := make([]byte, PBKDF2SaltSize)
	if _, err := io.ReadFull(rand, salt); err != nil {
		return nil, errors.Wrap(err, "failed to generate salt")
	}
	iv := make([]byte, ciph.blockSize)
	if _, err := io.ReadFull(rand, iv); err != nil {
		return nil, errors.Wrap(err, "failed to generate IV")
	}

	key := ciph.deriveKey(password, salt, sha256.New)
	block, err := ciph.cipherFunc(key)
	if err != nil {
		return nil, errors.Wrap(err, "failed to create cipher")
	}
	enc := cipher.NewCBCEncrypter(block, iv)
	pad := ciph.blockSize - len(data)%ciph.blockSize
	encrypted := make([]byte, len(data), len(data)+pad)
	// We could save this copy by encrypting all the whole blocks in
	// the data separately, but it doesn't seem worth the additional
	// code.
	copy(encrypted, data)
	// See RFC 1423, section 1.1
	for i := 0; i < pad; i++ {
		encrypted = append(encrypted, byte(pad))
	}
	enc.CryptBlocks(encrypted, encrypted)

	// Build encrypted asn1 data
	pki := encryptedPrivateKeyInfo{
		Algo: encryptedlAlgorithmIdentifier{
			Algorithm: oidPBES2,
			Parameters: pbes2Params{
				KeyDerivationFunc: pbkdf2Algorithms{
					Algo: oidPKCS5PBKDF2,
					PBKDF2Params: pbkdf2Params{
						Salt:           salt,
						IterationCount: PBKDF2Iterations,
						PrfParam: prfParam{
							Algo:      oidHMACWithSHA256,
							NullParam: asn1.NullRawValue,
						},
					},
				},
				EncryptionScheme: pbkdf2Encs{
					EncryAlgo: ciph.identifier,
					IV:        iv,
				},
			},
		},
		PrivateKey: encrypted,
	}

	b, err := asn1.Marshal(pki)
	if err != nil {
		return nil, errors.Wrap(err, "error marshaling encrypted key")
	}
	return &pem.Block{
		Type:  "ENCRYPTED PRIVATE KEY",
		Bytes: b,
	}, nil
}