1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
|
package x25519
import (
"bytes"
"crypto"
"crypto/ed25519"
"crypto/sha512"
"crypto/subtle"
"errors"
"io"
"strconv"
"filippo.io/edwards25519"
"filippo.io/edwards25519/field"
"golang.org/x/crypto/curve25519"
)
const (
// PrivateKeySize is the size in bytes of a X25519 private key.
PrivateKeySize = 32
// PublicKeySize is the size in bytes of a X25519 public key.
PublicKeySize = 32
SignatureSize = 64
)
var one = (&field.Element{}).One()
// PrivateKey is the type used to represent a X25519 private key.
type PrivateKey []byte
// PublicKey is the type used to represent a X25519 public key.
type PublicKey []byte
// GenerateKey generates a public/private key pair using entropy from rand.
func GenerateKey(rand io.Reader) (PublicKey, PrivateKey, error) {
priv := make([]byte, PrivateKeySize)
if _, err := io.ReadFull(rand, priv); err != nil {
return nil, nil, err
}
pub, err := curve25519.X25519(priv, curve25519.Basepoint)
if err != nil {
return nil, nil, err
}
return pub, priv, err
}
// ToEd25519 converts the public key p into a ed25519 key.
//
// (x, y) = (sqrt(-486664)*u/v, (u-1)/(u+1))
func (p PublicKey) ToEd25519() (ed25519.PublicKey, error) {
a, err := convertMont(p)
if err != nil {
return nil, err
}
return a.Bytes(), nil
}
// Equal reports whether p and x have the same value.
func (p PublicKey) Equal(x crypto.PublicKey) bool {
xx, ok := x.(PublicKey)
if !ok {
return false
}
return bytes.Equal(p, xx)
}
// Public returns the public key using scalar multiplication (scalar * point)
// using the Curve25519 basepoint. It will return nil if the private key is not
// a valid one.
func (p PrivateKey) Public() crypto.PublicKey {
pub, _ := p.PublicKey()
return pub
}
// Equal reports whether p and x have the same value.
func (p PrivateKey) Equal(x crypto.PrivateKey) bool {
xx, ok := x.(PrivateKey)
if !ok {
return false
}
return bytes.Equal(p, xx)
}
// Public returns the public key using scalar multiplication (scalar * point)
// using the Curve25519 basepoint.
func (p PrivateKey) PublicKey() (PublicKey, error) {
pub, err := curve25519.X25519(p, curve25519.Basepoint)
if err != nil {
return nil, err
}
return pub, nil
}
// SharedKey returns the result of the scalar multiplication (scalar * point),
// using the PrivateKey as the scalar value and the given key as the point. Both
// scalar and point must be slices of 32 bytes.
func (p PrivateKey) SharedKey(peerPublicKey []byte) ([]byte, error) {
sharedKey, err := curve25519.X25519(p, peerPublicKey)
if err != nil {
return nil, err
}
return sharedKey, nil
}
// Sign signs the given message with the private key p and returns a signature.
//
// It implements the XEdDSA sign method defined in
// https://signal.org/docs/specifications/xeddsa/#xeddsa
//
// XEdDSA performs two passes over messages to be signed and therefore cannot
// handle pre-hashed messages. Thus opts.HashFunc() must return zero to indicate
// the message hasn't been hashed. This can be achieved by passing
// crypto.Hash(0) as the value for opts.
func (p PrivateKey) Sign(rand io.Reader, message []byte, opts crypto.SignerOpts) (signature []byte, err error) {
if opts.HashFunc() != crypto.Hash(0) {
return nil, errors.New("x25519: cannot sign hashed message")
}
return Sign(rand, p, message)
}
// Sign signs the message with privateKey and returns a signature. It will panic
// if len(privateKey) is not PrivateKeySize.
//
// It implements the XEdDSA sign method defined in
// https://signal.org/docs/specifications/xeddsa/#xeddsa
//
// xeddsa_sign(k, M, Z):
// A, a = calculate_key_pair(k)
// r = hash1(a || M || Z) (mod q)
// R = rB
// h = hash(R || A || M) (mod q)
// s = r + ha (mod q)
// return R || s
func Sign(rand io.Reader, p PrivateKey, message []byte) (signature []byte, err error) {
if l := len(p); l != PrivateKeySize {
panic("x25519: bad private key length: " + strconv.Itoa(l))
}
pub, priv, err := p.calculateKeyPair()
if err != nil {
return nil, err
}
random := make([]byte, 64)
if _, err := io.ReadFull(rand, random); err != nil {
return nil, err
}
// Using same prefix in libsignal-protocol-c implementation, but can be any
// 32 byte prefix. Golang's ed25519 implementation uses:
//
// ph := sha512.Sum512(a.Bytes())
// prefix := ph[32:]
prefix := [32]byte{
0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
}
rh := sha512.New()
rh.Write(prefix[:])
rh.Write(priv.Bytes())
rh.Write(message)
rh.Write(random)
rDigest := make([]byte, 0, sha512.Size)
rDigest = rh.Sum(rDigest)
r, err := edwards25519.NewScalar().SetUniformBytes(rDigest)
if err != nil {
return nil, err
}
R := (&edwards25519.Point{}).ScalarBaseMult(r) //nolint:gocritic // variable names match crypto formulae docs
hh := sha512.New()
hh.Write(R.Bytes())
hh.Write(pub)
hh.Write(message)
hDigest := make([]byte, 0, sha512.Size)
hDigest = hh.Sum(hDigest)
h, err := edwards25519.NewScalar().SetUniformBytes(hDigest)
if err != nil {
return nil, err
}
s := (&edwards25519.Scalar{}).Add(r, h.Multiply(h, priv))
sig := make([]byte, 64)
copy(sig[:32], R.Bytes())
copy(sig[32:], s.Bytes())
return sig, nil
}
// Verify reports whether sig is a valid signature of message by publicKey. It
// will panic if len(publicKey) is not PublicKeySize.
//
// It implements the XEdDSA verify method defined in
// https://signal.org/docs/specifications/xeddsa/#xeddsa
//
// xeddsa_verify(u, M, (R || s)):
// if u >= p or R.y >= 2|p| or s >= 2|q|:
// return false
// A = convert_mont(u)
// if not on_curve(A):
// return false
// h = hash(R || A || M) (mod q)
// Rcheck = sB - hA
// if bytes_equal(R, Rcheck):
// return true
// return false
func Verify(publicKey PublicKey, message, sig []byte) bool {
// The following code should be equivalent to:
//
// pub, err := publicKey.ToEd25519()
// if err != nil {
// return false
// }
// return ed25519.Verify(pub, message, sig)
if l := len(publicKey); l != PublicKeySize {
panic("x25519: bad public key length: " + strconv.Itoa(l))
}
if len(sig) != SignatureSize || sig[63]&0xE0 != 0 {
return false
}
a, err := convertMont(publicKey)
if err != nil {
return false
}
hh := sha512.New()
hh.Write(sig[:32])
hh.Write(a.Bytes())
hh.Write(message)
hDigest := make([]byte, 0, sha512.Size)
hDigest = hh.Sum(hDigest)
h, err := edwards25519.NewScalar().SetUniformBytes(hDigest)
if err != nil {
return false
}
s, err := edwards25519.NewScalar().SetCanonicalBytes(sig[32:])
if err != nil {
return false
}
minusA := (&edwards25519.Point{}).Negate(a)
r := (&edwards25519.Point{}).VarTimeDoubleScalarBaseMult(h, minusA, s)
return subtle.ConstantTimeCompare(sig[:32], r.Bytes()) == 1
}
// calculateKeyPair converts a Montgomery private key k to a twisted Edwards
// public key and private key (A, a) as defined in
// https://signal.org/docs/specifications/xeddsa/#elliptic-curve-conversions
//
// calculate_key_pair(k):
// E = kB
// A.y = E.y
// A.s = 0
// if E.s == 1:
// a = -k (mod q)
// else:
// a = k (mod q)
// return A, a
func (p PrivateKey) calculateKeyPair() ([]byte, *edwards25519.Scalar, error) {
var pA edwards25519.Point
var sa edwards25519.Scalar
k, err := (&edwards25519.Scalar{}).SetBytesWithClamping(p)
if err != nil {
return nil, nil, err
}
pub := pA.ScalarBaseMult(k).Bytes()
signBit := (pub[31] & 0x80) >> 7
if signBit == 1 {
sa.Negate(k)
// Set sig bit to 0
pub[31] &= 0x7F
} else {
sa.Set(k)
}
return pub, &sa, nil
}
// convertMont converts from a Montgomery u-coordinate to a twisted Edwards
// point P, according to
// https://signal.org/docs/specifications/xeddsa/#elliptic-curve-conversions
//
// convert_mont(u):
// umasked = u (mod 2|p|)
// P.y = u_to_y(umasked)
// P.s = 0
// return P
func convertMont(u PublicKey) (*edwards25519.Point, error) {
um, err := (&field.Element{}).SetBytes(u)
if err != nil {
return nil, err
}
// y = (u - 1)/(u + 1)
a := new(field.Element).Subtract(um, one)
b := new(field.Element).Add(um, one)
y := new(field.Element).Multiply(a, b.Invert(b)).Bytes()
// Set sign to 0
y[31] &= 0x7F
return (&edwards25519.Point{}).SetBytes(y)
}
|