1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
|
// Copyright 2013 Sonia Keys.
// Licensed under MIT license. See "license" file in this source tree.
// Mean is a simple color quantizer. The algorithm successively divides the
// color space much like a median cut algorithm, but a mean statistic is used
// rather than a median. In another simplification, there is no priority
// queue to order color blocks; linear search is used instead.
//
// An added sopphistication though, is that division proceeds in two stages,
// with somewhat different criteria used for the earlier cuts than for the
// later cuts.
//
// Motivation for using the mean is the observation that in a two stage
// algorithm, cuts are offset from the computed average so having the logically
// "correct" value of the median must not be that important. Motivation
// for the linear search is that the number of blocks to search is limited
// to the target number of colors in the palette, which is small and typically
// limited to 256. If n is 256, O(log n) and O(n) both become O(1).
package mean
import (
"image"
"image/color"
"image/draw"
"math"
"github.com/soniakeys/quant"
"github.com/soniakeys/quant/internal"
)
// Quantizer methods implement mean cut color quantization.
//
// The value is the target number of colors.
// Methods do not require pointer receivers, simply construct Quantizer
// objects with a type conversion.
//
// The type satisfies both quant.Quantizer and draw.Quantizer interfaces.
type Quantizer int
var _ quant.Quantizer = Quantizer(0)
var _ draw.Quantizer = Quantizer(0)
// Paletted performs color quantization and returns a paletted image.
//
// Returned is a new image.Paletted with no more than q colors. Note though
// that image.Paletted is limited to 256 colors.
func (q Quantizer) Paletted(img image.Image) *image.Paletted {
n := int(q)
if n > 256 {
n = 256
}
qz := newQuantizer(img, n)
if n > 1 {
qz.cluster() // cluster pixels by color
}
return qz.paletted() // generate paletted image from clusters
}
// Palette performs color quantization and returns a quant.Palette object.
//
// Returned is a palette with no more than q colors. Q may be > 256.
func (q Quantizer) Palette(img image.Image) quant.Palette {
qz := newQuantizer(img, int(q))
if q > 1 {
qz.cluster() // cluster pixels by color
}
return qz.palette()
}
// Quantize performs color quantization and returns a color.Palette.
//
// Following the behavior documented with the draw.Quantizer interface,
// "Quantize appends up to cap(p) - len(p) colors to p and returns the
// updated palette...." This method does not limit the number of colors
// to 256. Cap(p) or the quantity cap(p) - len(p) may be > 256.
// Also for this method the value of the Quantizer object is ignored.
func (Quantizer) Quantize(p color.Palette, m image.Image) color.Palette {
n := cap(p) - len(p)
qz := newQuantizer(m, n)
if n > 1 {
qz.cluster() // cluster pixels by color
}
return p[:len(p)+copy(p[len(p):cap(p)], qz.palette().ColorPalette())]
}
type quantizer struct {
img image.Image // original image
cs []cluster // len(cs) is the desired number of colors
pxRGBA func(x, y int) (r, g, b, a uint32) // function to get original image RGBA color values
}
type point struct{ x, y int32 }
type cluster struct {
px []point // list of points in the cluster
// rgb const identifying dimension in color space with widest range
widestDim int
min, max uint32 // min, max color values in dimension with widest range
volume uint64 // color volume
priority int // early: population, late: population*volume
}
// indentifiers for RGB channels, or dimensions or axes of RGB color space
const (
rgbR = iota
rgbG
rgbB
)
func newQuantizer(img image.Image, n int) *quantizer {
if n < 1 {
return &quantizer{img: img, pxRGBA: internal.PxRGBAfunc(img)}
}
// Make list of all pixels in image.
b := img.Bounds()
px := make([]point, (b.Max.X-b.Min.X)*(b.Max.Y-b.Min.Y))
i := 0
for y := b.Min.Y; y < b.Max.Y; y++ {
for x := b.Min.X; x < b.Max.X; x++ {
px[i].x = int32(x)
px[i].y = int32(y)
i++
}
}
// Make clusters, populate first cluster with complete pixel list.
cs := make([]cluster, n)
cs[0].px = px
return &quantizer{img: img, cs: cs, pxRGBA: internal.PxRGBAfunc(img)}
}
// Cluster by repeatedly splitting clusters in two stages. For the first
// stage, prioritize by population and split tails off distribution in color
// dimension with widest range. For the second stage, prioritize by the
// product of population and color volume, and split at the mean of the color
// values in the dimension with widest range. Terminate when the desired number
// of clusters has been populated or when clusters cannot be further split.
func (qz *quantizer) cluster() {
cs := qz.cs
half := len(cs) / 2
// cx is index of new cluster, populated at start of loop here, but
// not yet analyzed.
cx := 0
c := &cs[cx]
for {
qz.setPriority(c, cx < half) // compute statistics for new cluster
// determine cluster to split, sx
sx := -1
var maxP int
for x := 0; x <= cx; x++ {
// rule is to consider only clusters with non-zero color volume
// and then split cluster with highest priority.
if c := &cs[x]; c.max > c.min && c.priority > maxP {
maxP = c.priority
sx = x
}
}
// If no clusters have any color variation, mark the end of the
// cluster list and quit early.
if sx < 0 {
qz.cs = qz.cs[:cx+1]
break
}
s := &cs[sx]
m := qz.cutValue(s, cx < half) // get where to split cluster
// point to next cluster to populate
cx++
c = &cs[cx]
// populate c by splitting s into c and s at value m
qz.split(s, c, m)
// Normal exit is when all clusters are populated.
if cx == len(cs)-1 {
break
}
if cx == half {
// change priorities on existing clusters
for x := 0; x < cx; x++ {
cs[x].priority =
int(uint64(cs[x].priority) * (cs[x].volume >> 16) >> 29)
}
}
qz.setPriority(s, cx < half) // set priority for newly split s
}
}
func (q *quantizer) setPriority(c *cluster, early bool) {
// Find extents of color values in each dimension.
var maxR, maxG, maxB uint32
minR := uint32(math.MaxUint32)
minG := uint32(math.MaxUint32)
minB := uint32(math.MaxUint32)
for _, p := range c.px {
r, g, b, _ := q.pxRGBA(int(p.x), int(p.y))
if r < minR {
minR = r
}
if r > maxR {
maxR = r
}
if g < minG {
minG = g
}
if g > maxG {
maxG = g
}
if b < minB {
minB = b
}
if b > maxB {
maxB = b
}
}
// See which color dimension had the widest range.
w := rgbG
min := minG
max := maxG
if maxR-minR > max-min {
w = rgbR
min = minR
max = maxR
}
if maxB-minB > max-min {
w = rgbB
min = minB
max = maxB
}
// store statistics
c.widestDim = w
c.min = min
c.max = max
c.volume = uint64(maxR-minR) * uint64(maxG-minG) * uint64(maxB-minB)
c.priority = len(c.px)
if !early {
c.priority = int(uint64(c.priority) * (c.volume >> 16) >> 29)
}
}
func (q *quantizer) cutValue(c *cluster, early bool) uint32 {
var sum uint64
switch c.widestDim {
case rgbR:
for _, p := range c.px {
r, _, _, _ := q.pxRGBA(int(p.x), int(p.y))
sum += uint64(r)
}
case rgbG:
for _, p := range c.px {
_, g, _, _ := q.pxRGBA(int(p.x), int(p.y))
sum += uint64(g)
}
case rgbB:
for _, p := range c.px {
_, _, b, _ := q.pxRGBA(int(p.x), int(p.y))
sum += uint64(b)
}
}
mean := uint32(sum / uint64(len(c.px)))
if early {
// split in middle of longer tail rather than at mean
if c.max-mean > mean-c.min {
mean = (mean + c.max) / 2
} else {
mean = (mean + c.min) / 2
}
}
return mean
}
func (q *quantizer) split(s, c *cluster, m uint32) {
px := s.px
var v uint32
i := 0
last := len(px) - 1
for i <= last {
// Get color value in appropriate dimension.
r, g, b, _ := q.pxRGBA(int(px[i].x), int(px[i].y))
switch s.widestDim {
case rgbR:
v = r
case rgbG:
v = g
case rgbB:
v = b
}
// Split into two non-empty parts at m.
if v < m || m == s.min && v == m {
i++
} else {
px[last], px[i] = px[i], px[last]
last--
}
}
// Split the pixel list.
s.px = px[:i]
c.px = px[i:]
}
func (qz *quantizer) paletted() *image.Paletted {
cp := make(color.Palette, len(qz.cs))
pi := image.NewPaletted(qz.img.Bounds(), cp)
for i := range qz.cs {
px := qz.cs[i].px
// Average values in cluster to get palette color.
var rsum, gsum, bsum int64
for _, p := range px {
r, g, b, _ := qz.pxRGBA(int(p.x), int(p.y))
rsum += int64(r)
gsum += int64(g)
bsum += int64(b)
}
n64 := int64(len(px) << 8)
cp[i] = color.RGBA{
uint8(rsum / n64),
uint8(gsum / n64),
uint8(bsum / n64),
0xff,
}
// set image pixels
for _, p := range px {
pi.SetColorIndex(int(p.x), int(p.y), uint8(i))
}
}
return pi
}
func (qz *quantizer) palette() quant.Palette {
cp := make(color.Palette, len(qz.cs))
for i := range qz.cs {
px := qz.cs[i].px
// Average values in cluster to get palette color.
var rsum, gsum, bsum int64
for _, p := range px {
r, g, b, _ := qz.pxRGBA(int(p.x), int(p.y))
rsum += int64(r)
gsum += int64(g)
bsum += int64(b)
}
n64 := int64(len(px) << 8)
cp[i] = color.RGBA{
uint8(rsum / n64),
uint8(gsum / n64),
uint8(bsum / n64),
0xff,
}
}
return quant.LinearPalette{cp}
}
|