1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
|
package xlsx
import (
"math"
"time"
)
const (
MJD_0 float64 = 2400000.5
MJD_JD2000 float64 = 51544.5
secondsInADay = float64((24*time.Hour)/time.Second)
nanosInADay = float64((24*time.Hour)/time.Nanosecond)
)
var (
timeLocationUTC, _ = time.LoadLocation("UTC")
unixEpoc = time.Date(1970, time.January, 1, 0, 0, 0, 0, time.UTC)
// In 1900 mode, Excel takes dates in floating point numbers of days starting with Jan 1 1900.
// The days are not zero indexed, so Jan 1 1900 would be 1.
// Except that Excel pretends that Feb 29, 1900 occurred to be compatible with a bug in Lotus 123.
// So, this constant uses Dec 30, 1899 instead of Jan 1, 1900, so the diff will be correct.
// http://www.cpearson.com/excel/datetime.htm
excel1900Epoc = time.Date(1899, time.December, 30, 0, 0, 0, 0, time.UTC)
excel1904Epoc = time.Date(1904, time.January, 1, 0, 0, 0, 0, time.UTC)
// Days between epocs, including both off by one errors for 1900.
daysBetween1970And1900 = float64(unixEpoc.Sub(excel1900Epoc)/(24 * time.Hour))
daysBetween1970And1904 = float64(unixEpoc.Sub(excel1904Epoc)/(24 * time.Hour))
)
func TimeToUTCTime(t time.Time) time.Time {
return time.Date(t.Year(), t.Month(), t.Day(), t.Hour(), t.Minute(), t.Second(), t.Nanosecond(), timeLocationUTC)
}
func shiftJulianToNoon(julianDays, julianFraction float64) (float64, float64) {
switch {
case -0.5 < julianFraction && julianFraction < 0.5:
julianFraction += 0.5
case julianFraction >= 0.5:
julianDays += 1
julianFraction -= 0.5
case julianFraction <= -0.5:
julianDays -= 1
julianFraction += 1.5
}
return julianDays, julianFraction
}
// Return the integer values for hour, minutes, seconds and
// nanoseconds that comprised a given fraction of a day.
// values would round to 1 us.
func fractionOfADay(fraction float64) (hours, minutes, seconds, nanoseconds int) {
const (
c1us = 1e3
c1s = 1e9
c1day = 24 * 60 * 60 * c1s
)
frac := int64(c1day*fraction + c1us/2)
nanoseconds = int((frac%c1s)/c1us) * c1us
frac /= c1s
seconds = int(frac % 60)
frac /= 60
minutes = int(frac % 60)
hours = int(frac / 60)
return
}
func julianDateToGregorianTime(part1, part2 float64) time.Time {
part1I, part1F := math.Modf(part1)
part2I, part2F := math.Modf(part2)
julianDays := part1I + part2I
julianFraction := part1F + part2F
julianDays, julianFraction = shiftJulianToNoon(julianDays, julianFraction)
day, month, year := doTheFliegelAndVanFlandernAlgorithm(int(julianDays))
hours, minutes, seconds, nanoseconds := fractionOfADay(julianFraction)
return time.Date(year, time.Month(month), day, hours, minutes, seconds, nanoseconds, time.UTC)
}
// By this point generations of programmers have repeated the
// algorithm sent to the editor of "Communications of the ACM" in 1968
// (published in CACM, volume 11, number 10, October 1968, p.657).
// None of those programmers seems to have found it necessary to
// explain the constants or variable names set out by Henry F. Fliegel
// and Thomas C. Van Flandern. Maybe one day I'll buy that jounal and
// expand an explanation here - that day is not today.
func doTheFliegelAndVanFlandernAlgorithm(jd int) (day, month, year int) {
l := jd + 68569
n := (4 * l) / 146097
l = l - (146097*n+3)/4
i := (4000 * (l + 1)) / 1461001
l = l - (1461*i)/4 + 31
j := (80 * l) / 2447
d := l - (2447*j)/80
l = j / 11
m := j + 2 - (12 * l)
y := 100*(n-49) + i + l
return d, m, y
}
// Convert an excelTime representation (stored as a floating point number) to a time.Time.
func TimeFromExcelTime(excelTime float64, date1904 bool) time.Time {
var date time.Time
var wholeDaysPart = int(excelTime)
// Excel uses Julian dates prior to March 1st 1900, and
// Gregorian thereafter.
if wholeDaysPart <= 61 {
const OFFSET1900 = 15018.0
const OFFSET1904 = 16480.0
var date time.Time
if date1904 {
date = julianDateToGregorianTime(MJD_0, excelTime+OFFSET1904)
} else {
date = julianDateToGregorianTime(MJD_0, excelTime+OFFSET1900)
}
return date
}
var floatPart = excelTime - float64(wholeDaysPart)
if date1904 {
date = excel1904Epoc
} else {
date = excel1900Epoc
}
durationPart := time.Duration(nanosInADay * floatPart)
return date.AddDate(0,0, wholeDaysPart).Add(durationPart)
}
// TimeToExcelTime will convert a time.Time into Excel's float representation, in either 1900 or 1904
// mode. If you don't know which to use, set date1904 to false.
// TODO should this should handle Julian dates?
func TimeToExcelTime(t time.Time, date1904 bool) float64 {
// Get the number of days since the unix epoc
daysSinceUnixEpoc := float64(t.Unix())/secondsInADay
// Get the number of nanoseconds in days since Unix() is in seconds.
nanosPart := float64(t.Nanosecond())/nanosInADay
// Add both together plus the number of days difference between unix and Excel epocs.
var offsetDays float64
if date1904 {
offsetDays = daysBetween1970And1904
} else {
offsetDays = daysBetween1970And1900
}
daysSinceExcelEpoc := daysSinceUnixEpoc + offsetDays + nanosPart
return daysSinceExcelEpoc
}
|