1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
|
// Copyright 2016, 2017 Thales e-Security, Inc
//
// Permission is hereby granted, free of charge, to any person obtaining
// a copy of this software and associated documentation files (the
// "Software"), to deal in the Software without restriction, including
// without limitation the rights to use, copy, modify, merge, publish,
// distribute, sublicense, and/or sell copies of the Software, and to
// permit persons to whom the Software is furnished to do so, subject to
// the following conditions:
//
// The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
package crypto11
import (
"bytes"
"crypto"
"crypto/ecdsa"
"crypto/elliptic"
"encoding/asn1"
"io"
"math/big"
"github.com/miekg/pkcs11"
"github.com/pkg/errors"
)
// errUnsupportedEllipticCurve is returned when an elliptic curve
// unsupported by crypto11 is specified. Note that the error behavior
// for an elliptic curve unsupported by the underlying PKCS#11
// implementation will be different.
var errUnsupportedEllipticCurve = errors.New("unsupported elliptic curve")
// pkcs11PrivateKeyECDSA contains a reference to a loaded PKCS#11 ECDSA private key object.
type pkcs11PrivateKeyECDSA struct {
pkcs11PrivateKey
}
// Information about an Elliptic Curve
type curveInfo struct {
// ASN.1 marshaled OID
oid []byte
// Curve definition in Go form
curve elliptic.Curve
}
// ASN.1 marshal some value and panic on error
func mustMarshal(val interface{}) []byte {
if b, err := asn1.Marshal(val); err != nil {
panic(err)
} else {
return b
}
}
// Note: some of these are outside what crypto/elliptic currently
// knows about. So I'm making a (reasonable) assumption about what
// they will be called if they are either added or if someone
// specifies them explicitly.
//
// For public key export, the curve has to be a known one, otherwise
// you're stuffed. This is probably better fixed by adding well-known
// curves to crypto/elliptic rather than having a private copy here.
var wellKnownCurves = map[string]curveInfo{
"P-192": {
mustMarshal(asn1.ObjectIdentifier{1, 2, 840, 10045, 3, 1, 1}),
nil,
},
"P-224": {
mustMarshal(asn1.ObjectIdentifier{1, 3, 132, 0, 33}),
elliptic.P224(),
},
"P-256": {
mustMarshal(asn1.ObjectIdentifier{1, 2, 840, 10045, 3, 1, 7}),
elliptic.P256(),
},
"P-384": {
mustMarshal(asn1.ObjectIdentifier{1, 3, 132, 0, 34}),
elliptic.P384(),
},
"P-521": {
mustMarshal(asn1.ObjectIdentifier{1, 3, 132, 0, 35}),
elliptic.P521(),
},
"K-163": {
mustMarshal(asn1.ObjectIdentifier{1, 3, 132, 0, 1}),
nil,
},
"K-233": {
mustMarshal(asn1.ObjectIdentifier{1, 3, 132, 0, 26}),
nil,
},
"K-283": {
mustMarshal(asn1.ObjectIdentifier{1, 3, 132, 0, 16}),
nil,
},
"K-409": {
mustMarshal(asn1.ObjectIdentifier{1, 3, 132, 0, 36}),
nil,
},
"K-571": {
mustMarshal(asn1.ObjectIdentifier{1, 3, 132, 0, 38}),
nil,
},
"B-163": {
mustMarshal(asn1.ObjectIdentifier{1, 3, 132, 0, 15}),
nil,
},
"B-233": {
mustMarshal(asn1.ObjectIdentifier{1, 3, 132, 0, 27}),
nil,
},
"B-283": {
mustMarshal(asn1.ObjectIdentifier{1, 3, 132, 0, 17}),
nil,
},
"B-409": {
mustMarshal(asn1.ObjectIdentifier{1, 3, 132, 0, 37}),
nil,
},
"B-571": {
mustMarshal(asn1.ObjectIdentifier{1, 3, 132, 0, 39}),
nil,
},
}
func marshalEcParams(c elliptic.Curve) ([]byte, error) {
if ci, ok := wellKnownCurves[c.Params().Name]; ok {
return ci.oid, nil
}
// TODO use ANSI X9.62 ECParameters representation instead
return nil, errUnsupportedEllipticCurve
}
func unmarshalEcParams(b []byte) (elliptic.Curve, error) {
// See if it's a well-known curve
for _, ci := range wellKnownCurves {
if bytes.Equal(b, ci.oid) {
if ci.curve != nil {
return ci.curve, nil
}
return nil, errUnsupportedEllipticCurve
}
}
// TODO try ANSI X9.62 ECParameters representation
return nil, errUnsupportedEllipticCurve
}
func unmarshalEcPoint(b []byte, c elliptic.Curve) (*big.Int, *big.Int, error) {
var pointBytes []byte
extra, err := asn1.Unmarshal(b, &pointBytes)
if err != nil {
return nil, nil, errors.WithMessage(err, "elliptic curve point is invalid ASN.1")
}
if len(extra) > 0 {
// We weren't expecting extra data
return nil, nil, errors.New("unexpected data found when parsing elliptic curve point")
}
x, y := elliptic.Unmarshal(c, pointBytes)
if x == nil || y == nil {
return nil, nil, errors.New("failed to parse elliptic curve point")
}
return x, y, nil
}
// Export the public key corresponding to a private ECDSA key.
func exportECDSAPublicKey(session *pkcs11Session, pubHandle pkcs11.ObjectHandle) (crypto.PublicKey, error) {
var err error
var attributes []*pkcs11.Attribute
var pub ecdsa.PublicKey
template := []*pkcs11.Attribute{
pkcs11.NewAttribute(pkcs11.CKA_ECDSA_PARAMS, nil),
pkcs11.NewAttribute(pkcs11.CKA_EC_POINT, nil),
}
if attributes, err = session.ctx.GetAttributeValue(session.handle, pubHandle, template); err != nil {
return nil, err
}
if pub.Curve, err = unmarshalEcParams(attributes[0].Value); err != nil {
return nil, err
}
if pub.X, pub.Y, err = unmarshalEcPoint(attributes[1].Value, pub.Curve); err != nil {
return nil, err
}
return &pub, nil
}
// GenerateECDSAKeyPair creates a ECDSA key pair on the token using curve c. The id parameter is used to
// set CKA_ID and must be non-nil. Only a limited set of named elliptic curves are supported. The
// underlying PKCS#11 implementation may impose further restrictions.
func (c *Context) GenerateECDSAKeyPair(id []byte, curve elliptic.Curve) (Signer, error) {
if c.closed.Get() {
return nil, errClosed
}
public, err := NewAttributeSetWithID(id)
if err != nil {
return nil, err
}
// Copy the AttributeSet to allow modifications.
private := public.Copy()
return c.GenerateECDSAKeyPairWithAttributes(public, private, curve)
}
// GenerateECDSAKeyPairWithLabel creates a ECDSA key pair on the token using curve c. The id and label parameters are used to
// set CKA_ID and CKA_LABEL respectively and must be non-nil. Only a limited set of named elliptic curves are supported. The
// underlying PKCS#11 implementation may impose further restrictions.
func (c *Context) GenerateECDSAKeyPairWithLabel(id, label []byte, curve elliptic.Curve) (Signer, error) {
if c.closed.Get() {
return nil, errClosed
}
public, err := NewAttributeSetWithIDAndLabel(id, label)
if err != nil {
return nil, err
}
// Copy the AttributeSet to allow modifications.
private := public.Copy()
return c.GenerateECDSAKeyPairWithAttributes(public, private, curve)
}
// GenerateECDSAKeyPairWithAttributes generates an ECDSA key pair on the token. After this function returns, public and
// private will contain the attributes applied to the key pair. If required attributes are missing, they will be set to
// a default value.
func (c *Context) GenerateECDSAKeyPairWithAttributes(public, private AttributeSet, curve elliptic.Curve) (Signer, error) {
if c.closed.Get() {
return nil, errClosed
}
var k Signer
err := c.withSession(func(session *pkcs11Session) error {
parameters, err := marshalEcParams(curve)
if err != nil {
return err
}
public.AddIfNotPresent([]*pkcs11.Attribute{
pkcs11.NewAttribute(pkcs11.CKA_CLASS, pkcs11.CKO_PUBLIC_KEY),
pkcs11.NewAttribute(pkcs11.CKA_KEY_TYPE, pkcs11.CKK_ECDSA),
pkcs11.NewAttribute(pkcs11.CKA_TOKEN, true),
pkcs11.NewAttribute(pkcs11.CKA_VERIFY, true),
pkcs11.NewAttribute(pkcs11.CKA_ECDSA_PARAMS, parameters),
})
private.AddIfNotPresent([]*pkcs11.Attribute{
pkcs11.NewAttribute(pkcs11.CKA_TOKEN, true),
pkcs11.NewAttribute(pkcs11.CKA_SIGN, true),
pkcs11.NewAttribute(pkcs11.CKA_SENSITIVE, true),
pkcs11.NewAttribute(pkcs11.CKA_EXTRACTABLE, false),
})
mech := []*pkcs11.Mechanism{pkcs11.NewMechanism(pkcs11.CKM_ECDSA_KEY_PAIR_GEN, nil)}
pubHandle, privHandle, err := session.ctx.GenerateKeyPair(session.handle,
mech,
public.ToSlice(),
private.ToSlice())
if err != nil {
return err
}
pub, err := exportECDSAPublicKey(session, pubHandle)
if err != nil {
return err
}
k = &pkcs11PrivateKeyECDSA{
pkcs11PrivateKey: pkcs11PrivateKey{
pkcs11Object: pkcs11Object{
handle: privHandle,
context: c,
},
pubKeyHandle: pubHandle,
pubKey: pub,
}}
return nil
})
return k, err
}
// Sign signs a message using an ECDSA key.
//
// This completes the implemention of crypto.Signer for pkcs11PrivateKeyECDSA.
//
// PKCS#11 expects to pick its own random data where necessary for signatures, so the rand argument is ignored.
//
// The return value is a DER-encoded byteblock.
func (signer *pkcs11PrivateKeyECDSA) Sign(rand io.Reader, digest []byte, opts crypto.SignerOpts) ([]byte, error) {
return signer.context.dsaGeneric(signer.handle, pkcs11.CKM_ECDSA, digest)
}
|