1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
|
// Tideland Go Library - Numerics - Unit Tests
//
// Copyright (C) 2009-2017 Frank Mueller / Tideland / Oldenburg / Germany
//
// All rights reserved. Use of this source code is governed
// by the new BSD license.
package numerics
//--------------------
// IMPORTS
//--------------------
import (
"sort"
"testing"
"github.com/tideland/golib/audit"
)
//--------------------
// TESTS
//--------------------
// Test simple point.
func TestSimplePoint(t *testing.T) {
assert := audit.NewTestingAssertion(t, true)
// Create some points.
pa := NewPoint(1.0, 5.0)
pb := NewPoint(2.0, 2.0)
pc := NewPoint(3.0, 4.0)
// Asserts.
assert.Equal(pa.X(), 1.0, "X of point A")
assert.Equal(pa.Y(), 5.0, "Y of point A")
assert.About(pb.DistanceTo(pc), 2.236, 0.0001, "distance B to C")
assert.Equal(MiddlePoint(pb, pc).X(), 2.5, "X value of middle point")
assert.Equal(MiddlePoint(pb, pc).Y(), 3.0, "Y value of middle point")
assert.Equal(PointVector(pb, pc).String(), "<1.000000, 2.000000>", "string representation of vector")
}
// Test simple point array.
func TestSimplePointArray(t *testing.T) {
assert := audit.NewTestingAssertion(t, true)
// Create some points.
ps := NewPoints()
assert.Empty(ps, "No points yet.")
ps = append(ps, NewPoint(2.0, 2.0))
ps = append(ps, NewPoint(5.0, 1.0))
ps = append(ps, NewPoint(4.0, 2.0))
ps = append(ps, NewPoint(3.0, 3.0))
ps = append(ps, NewPoint(1.0, 1.0))
// Asserts.
assert.Equal(ps.Len(), 5, "now with points")
sort.Sort(ps)
assert.Equal(ps[0], NewPoint(1.0, 1.0), "first point")
assert.Equal(ps.Len(), 5, "length")
assert.Equal(ps[3].X(), 4.0, "X of 4th point")
}
// Test simple polynomial function.
func TestSimplePolynomialFunction(t *testing.T) {
assert := audit.NewTestingAssertion(t, true)
// Some polynominal function evaluations.
p := NewPolynomialFunction([]float64{2.0, 2.0})
fa := p.Eval(-2.0)
fb := p.Eval(-1.0)
fc := p.Eval(0.0)
fd := p.Eval(2.0)
// Asserts.
assert.Equal(fa, -2.0, "f(a)")
assert.Equal(fb, 0.0, "f(b)")
assert.Equal(fc, 2.0, "f(c)")
assert.Equal(fd, 6.0, "f(d)")
}
// Test polynomial function printing.
func TestPolynomialFunctionPrinting(t *testing.T) {
assert := audit.NewTestingAssertion(t, true)
p := NewPolynomialFunction([]float64{-7.55, 2.0, -3.1, 2.66, -3.45})
// Asserts.
assert.Equal(p.String(), "f(x) := -3.45x^4+2.66x^3-3.1x^2+2x-7.55", "string representation")
}
// Test quadratic polynomial function.
func TestQuadraticPolynomialFunction(t *testing.T) {
assert := audit.NewTestingAssertion(t, true)
// Some polynominal function evaluations.
p := NewPolynomialFunction([]float64{0.0, 0.0, 1.0})
fa := p.Eval(-1.0)
fb := p.Eval(2.0)
fc := p.Eval(-3.0)
// Asserts.
assert.Equal(fa, 1.0, "f(a)")
assert.Equal(fb, 4.0, "f(b)")
assert.Equal(fc, 9.0, "f(c)")
}
// Test polynomial function differentiation.
func TestPolynomialFunctionDifferentiation(t *testing.T) {
assert := audit.NewTestingAssertion(t, true)
p := NewPolynomialFunction([]float64{1.0, 2.0, 1.0, 3.0})
dp := p.Differentiate()
// Asserts.
assert.Equal(dp.String(), "f(x) := 9x^2+2x+2")
}
// Test interpolation.
func TestInterpolation(t *testing.T) {
assert := audit.NewTestingAssertion(t, true)
// Build a cubic spline function.
ps := NewPoints()
ps = append(ps, NewPoint(1.0, 1.0))
ps = append(ps, NewPoint(2.0, 2.0))
ps = append(ps, NewPoint(3.0, 3.0))
ps = append(ps, NewPoint(4.0, 2.0))
ps = append(ps, NewPoint(5.0, 1.0))
f := NewCubicSplineFunction(ps)
// Asserts.
assert.About(f.EvalPoint(3.5).Y(), 2.7678, 0.0001, "f(3.5)")
}
// Test points evaluation.
func TestPointsEvaluation(t *testing.T) {
assert := audit.NewTestingAssertion(t, true)
// Build a least squares function out of the results
// off a cubic spline function.
ps := NewPoints()
ps = append(ps, NewPoint(0.0, 0.7))
ps = append(ps, NewPoint(1.0, 1.1))
ps = append(ps, NewPoint(2.0, 0.0))
ps = append(ps, NewPoint(3.0, -0.5))
ps = append(ps, NewPoint(4.0, -2.0))
ps = append(ps, NewPoint(5.0, -1.0))
ps = append(ps, NewPoint(6.0, 0.2))
ps = append(ps, NewPoint(7.0, 0.3))
ps = append(ps, NewPoint(8.0, -0.4))
ps = append(ps, NewPoint(9.0, -0.5))
lsf := ps.CubicSplineFunction().EvalPoints(0.7, 8.1, 50).LeastSquaresFunction()
// Asserts.
assert.About(lsf.Eval(15.0), -0.0407, 0.0001, "f(15.0)")
}
// Test least squares function.
func TestLeastSquaresFunction(t *testing.T) {
assert := audit.NewTestingAssertion(t, true)
// Build a leas squares function.
lsf := NewLeastSquaresFunction(nil)
lsf.AppendPoint(1.0, 1.0)
lsf.AppendPoint(2.0, 0.5)
lsf.AppendPoint(3.0, 2.0)
lsf.AppendPoint(4.0, 2.5)
lsf.AppendPoint(5.0, 1.5)
lsf.AppendPoint(6.0, 1.0)
lsf.AppendPoint(7.0, 1.5)
// Asserts.
assert.About(lsf.Eval(9.0), 1.7857, 0.0001, "f(9.0)")
assert.About(lsf.Eval(4.5), 1.4642, 0.0001, "f(4.5)")
}
// EOF
|