File: rtree.go

package info (click to toggle)
golang-github-tidwall-rtree 0.0~git20180113.6cd4270-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 124 kB
  • sloc: makefile: 2
file content (673 lines) | stat: -rw-r--r-- 15,425 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
package base

import (
	"math"
	"unsafe"
)

// precalculate infinity
var mathInfNeg = math.Inf(-1)
var mathInfPos = math.Inf(+1)

type treeNode struct {
	min, max []float64
	children []*treeNode
	count    int
	height   int
	leaf     bool
}

func (node *treeNode) unsafeItem() *treeItem {
	return (*treeItem)(unsafe.Pointer(node))
}

func (tr *RTree) createNode(children []*treeNode) *treeNode {
	n := &treeNode{
		height:   1,
		leaf:     true,
		children: make([]*treeNode, tr.maxEntries+1),
	}
	if len(children) > 0 {
		n.count = len(children)
		copy(n.children[:n.count], children)
	}
	n.min = make([]float64, tr.dims)
	n.max = make([]float64, tr.dims)
	for i := 0; i < tr.dims; i++ {
		n.min[i] = mathInfPos
		n.max[i] = mathInfNeg
	}
	return n
}

func (node *treeNode) extend(b *treeNode) {
	for i := 0; i < len(node.min); i++ {
		if b.min[i] < node.min[i] {
			node.min[i] = b.min[i]
		}
		if b.max[i] > node.max[i] {
			node.max[i] = b.max[i]
		}
	}
}

func (node *treeNode) area() float64 {
	area := node.max[0] - node.min[0]
	for i := 1; i < len(node.min); i++ {
		area *= node.max[i] - node.min[i]
	}
	return area
}

func (node *treeNode) enlargedAreaAxis(b *treeNode, axis int) float64 {
	var max, min float64
	if b.max[axis] > node.max[axis] {
		max = b.max[axis]
	} else {
		max = node.max[axis]
	}
	if b.min[axis] < node.min[axis] {
		min = b.min[axis]
	} else {
		min = node.min[axis]
	}
	return max - min
}

func (node *treeNode) enlargedArea(b *treeNode) float64 {
	area := node.enlargedAreaAxis(b, 0)
	for i := 1; i < len(node.min); i++ {
		area *= node.enlargedAreaAxis(b, i)
	}
	return area
}

func (node *treeNode) intersectionAreaAxis(b *treeNode, axis int) float64 {
	var max, min float64
	if node.max[axis] < b.max[axis] {
		max = node.max[axis]
	} else {
		max = b.max[axis]
	}
	if node.min[axis] > b.min[axis] {
		min = node.min[axis]
	} else {
		min = b.min[axis]
	}
	if max > min {
		return max - min
	}
	return 0
}
func (node *treeNode) intersectionArea(b *treeNode) float64 {
	area := node.intersectionAreaAxis(b, 0)
	for i := 1; i < len(node.min); i++ {
		area *= node.intersectionAreaAxis(b, i)
	}
	return area
}
func (node *treeNode) margin() float64 {
	margin := node.max[0] - node.min[0]
	for i := 1; i < len(node.min); i++ {
		margin += node.max[i] - node.min[i]
	}
	return margin
}

type result int

const (
	not        result = 0
	intersects result = 1
	contains   result = 2
)

func (node *treeNode) overlaps(b *treeNode) result {
	for i := 0; i < len(node.min); i++ {
		if b.min[i] > node.max[i] || b.max[i] < node.min[i] {
			return not
		}
		if node.min[i] > b.min[i] || b.max[i] > node.max[i] {
			i++
			for ; i < len(node.min); i++ {
				if b.min[i] > node.max[i] || b.max[i] < node.min[i] {
					return not
				}
			}
			return intersects
		}
	}
	return contains
}

func (node *treeNode) intersects(b *treeNode) bool {
	for i := 0; i < len(node.min); i++ {
		if b.min[i] > node.max[i] || b.max[i] < node.min[i] {
			return false
		}
	}
	return true
}

func (node *treeNode) findItem(item interface{}) int {
	for i := 0; i < node.count; i++ {
		if node.children[i].unsafeItem().item == item {
			return i
		}
	}
	return -1
}

func (node *treeNode) contains(b *treeNode) bool {
	for i := 0; i < len(node.min); i++ {
		if node.min[i] > b.min[i] || b.max[i] > node.max[i] {
			return false
		}
	}
	return true
}

func (node *treeNode) childCount() int {
	if node.leaf {
		return node.count
	}
	var n int
	for i := 0; i < node.count; i++ {
		n += node.children[i].childCount()
	}
	return n
}

type treeItem struct {
	min, max []float64
	item     interface{}
}

func (item *treeItem) unsafeNode() *treeNode {
	return (*treeNode)(unsafe.Pointer(item))
}

// RTree is an R-tree
type RTree struct {
	dims       int
	maxEntries int
	minEntries int
	data       *treeNode // root node
	// resusable fields, these help performance of common mutable operations.
	reuse struct {
		path    []*treeNode // for reinsertion path
		indexes []int       // for remove function
		stack   []int       // for bulk loading
	}
}

// New creates a new R-tree
func New(dims, maxEntries int) *RTree {
	if dims <= 0 {
		panic("invalid dimensions")
	}

	tr := &RTree{}
	tr.dims = dims
	tr.maxEntries = int(math.Max(4, float64(maxEntries)))
	tr.minEntries = int(math.Max(2, math.Ceil(float64(tr.maxEntries)*0.4)))
	tr.data = tr.createNode(nil)
	return tr
}

// Insert inserts an item
func (tr *RTree) Insert(min, max []float64, item interface{}) {
	if len(min) != tr.dims || len(max) != tr.dims {
		panic("invalid dimensions")
	}
	if item == nil {
		panic("nil item")
	}
	bbox := treeNode{min: min, max: max}
	tr.insert(&bbox, item, tr.data.height-1, false)
}

func (tr *RTree) insert(bbox *treeNode, item interface{}, level int, isNode bool) {
	tr.reuse.path = tr.reuse.path[:0]
	node, insertPath := tr.chooseSubtree(bbox, tr.data, level, tr.reuse.path)
	if item == nil {
		// item is only nil when bulk loading a node
		if node.leaf {
			panic("loading node into leaf")
		}
		node.children[node.count] = bbox
		node.count++
	} else {
		ti := &treeItem{min: bbox.min, max: bbox.max, item: item}
		node.children[node.count] = ti.unsafeNode()
		node.count++
	}
	node.extend(bbox)
	for level >= 0 {
		if insertPath[level].count > tr.maxEntries {
			insertPath = tr.split(insertPath, level)
			level--
		} else {
			break
		}
	}
	tr.adjustParentBBoxes(bbox, insertPath, level)
	tr.reuse.path = insertPath
}

func (tr *RTree) adjustParentBBoxes(bbox *treeNode, path []*treeNode, level int) {
	// adjust bboxes along the given tree path
	for i := level; i >= 0; i-- {
		path[i].extend(bbox)
	}
}

func (tr *RTree) chooseSubtree(bbox, node *treeNode, level int, path []*treeNode) (*treeNode, []*treeNode) {
	var targetNode *treeNode
	var area, enlargement, minArea, minEnlargement float64
	for {
		path = append(path, node)
		if node.leaf || len(path)-1 == level {
			break
		}
		minEnlargement = mathInfPos
		minArea = minEnlargement
		for i := 0; i < node.count; i++ {
			child := node.children[i]
			area = child.area()
			enlargement = bbox.enlargedArea(child) - area
			if enlargement < minEnlargement {
				minEnlargement = enlargement
				if area < minArea {
					minArea = area
				}
				targetNode = child
			} else if enlargement == minEnlargement {
				if area < minArea {
					minArea = area
					targetNode = child
				}
			}
		}
		if targetNode != nil {
			node = targetNode
		} else if node.count > 0 {
			node = (*treeNode)(node.children[0])
		} else {
			node = nil
		}
	}
	return node, path
}
func (tr *RTree) split(insertPath []*treeNode, level int) []*treeNode {
	var node = insertPath[level]
	var M = node.count
	var m = tr.minEntries

	tr.chooseSplitAxis(node, m, M)
	splitIndex := tr.chooseSplitIndex(node, m, M)

	spliced := make([]*treeNode, node.count-splitIndex)
	copy(spliced, node.children[splitIndex:])
	node.count = splitIndex

	newNode := tr.createNode(spliced)
	newNode.height = node.height
	newNode.leaf = node.leaf

	tr.calcBBox(node)
	tr.calcBBox(newNode)

	if level != 0 {
		insertPath[level-1].children[insertPath[level-1].count] = newNode
		insertPath[level-1].count++
	} else {
		tr.splitRoot(node, newNode)
	}
	return insertPath
}
func (tr *RTree) chooseSplitIndex(node *treeNode, m, M int) int {
	var i int
	var bbox1, bbox2 *treeNode
	var overlap, area, minOverlap, minArea float64
	var index int

	minArea = mathInfPos
	minOverlap = minArea

	for i = m; i <= M-m; i++ {
		bbox1 = tr.distBBox(node, 0, i, nil)
		bbox2 = tr.distBBox(node, i, M, nil)

		overlap = bbox1.intersectionArea(bbox2)
		area = bbox1.area() + bbox2.area()

		// choose distribution with minimum overlap
		if overlap < minOverlap {
			minOverlap = overlap
			index = i

			if area < minArea {
				minArea = area
			}
		} else if overlap == minOverlap {
			// otherwise choose distribution with minimum area
			if area < minArea {
				minArea = area
				index = i
			}
		}
	}
	return index
}
func (tr *RTree) calcBBox(node *treeNode) {
	tr.distBBox(node, 0, node.count, node)
}
func (tr *RTree) chooseSplitAxis(node *treeNode, m, M int) {
	minMargin := tr.allDistMargin(node, m, M, 0)
	var minAxis int
	for axis := 1; axis < tr.dims; axis++ {
		margin := tr.allDistMargin(node, m, M, axis)
		if margin < minMargin {
			minMargin = margin
			minAxis = axis
		}
	}
	if minAxis < tr.dims {
		tr.sortNodes(node, minAxis)
	}
}
func (tr *RTree) splitRoot(node, newNode *treeNode) {
	tr.data = tr.createNode([]*treeNode{node, newNode})
	tr.data.height = node.height + 1
	tr.data.leaf = false
	tr.calcBBox(tr.data)
}
func (tr *RTree) distBBox(node *treeNode, k, p int, destNode *treeNode) *treeNode {
	if destNode == nil {
		destNode = tr.createNode(nil)
	} else {
		for i := 0; i < tr.dims; i++ {
			destNode.min[i] = mathInfPos
			destNode.max[i] = mathInfNeg
		}
	}
	for i := k; i < p; i++ {
		if node.leaf {
			destNode.extend(node.children[i])
		} else {
			destNode.extend((*treeNode)(node.children[i]))
		}
	}
	return destNode
}
func (tr *RTree) allDistMargin(node *treeNode, m, M int, axis int) float64 {
	tr.sortNodes(node, axis)

	var leftBBox = tr.distBBox(node, 0, m, nil)
	var rightBBox = tr.distBBox(node, M-m, M, nil)
	var margin = leftBBox.margin() + rightBBox.margin()

	var i int

	if node.leaf {
		for i = m; i < M-m; i++ {
			leftBBox.extend(node.children[i])
			margin += leftBBox.margin()
		}
		for i = M - m - 1; i >= m; i-- {
			leftBBox.extend(node.children[i])
			margin += rightBBox.margin()
		}
	} else {
		for i = m; i < M-m; i++ {
			child := (*treeNode)(node.children[i])
			leftBBox.extend(child)
			margin += leftBBox.margin()
		}
		for i = M - m - 1; i >= m; i-- {
			child := (*treeNode)(node.children[i])
			leftBBox.extend(child)
			margin += rightBBox.margin()
		}
	}
	return margin
}
func (tr *RTree) sortNodes(node *treeNode, axis int) {
	sortByAxis(node.children[:node.count], axis)
}

func sortByAxis(items []*treeNode, axis int) {
	if len(items) < 2 {
		return
	}
	left, right := 0, len(items)-1
	pivotIndex := len(items) / 2
	items[pivotIndex], items[right] = items[right], items[pivotIndex]
	for i := range items {
		if items[i].min[axis] < items[right].min[axis] {
			items[i], items[left] = items[left], items[i]
			left++
		}
	}
	items[left], items[right] = items[right], items[left]
	sortByAxis(items[:left], axis)
	sortByAxis(items[left+1:], axis)
}

// Search searches the tree for items in the input rectangle
func (tr *RTree) Search(min, max []float64, iter func(item interface{}) bool) bool {
	bbox := &treeNode{min: min, max: max}
	if !tr.data.intersects(bbox) {
		return true
	}
	return tr.search(tr.data, bbox, iter)
}

func (tr *RTree) search(node, bbox *treeNode, iter func(item interface{}) bool) bool {
	if node.leaf {
		for i := 0; i < node.count; i++ {
			if bbox.intersects(node.children[i]) {
				if !iter(node.children[i].unsafeItem().item) {
					return false
				}
			}
		}
	} else {
		for i := 0; i < node.count; i++ {
			r := bbox.overlaps(node.children[i])
			if r == intersects {
				if !tr.search(node.children[i], bbox, iter) {
					return false
				}
			} else if r == contains {
				if !scan(node.children[i], iter) {
					return false
				}
			}
		}
	}
	return true
}

func (tr *RTree) IsEmpty() bool {
	empty := true
	tr.Scan(func(item interface{}) bool {
		empty = false
		return false
	})
	return empty
}

// Remove removes an item from the R-tree.
func (tr *RTree) Remove(min, max []float64, item interface{}) {
	bbox := &treeNode{min: min, max: max}
	tr.remove(bbox, item)
}

func (tr *RTree) remove(bbox *treeNode, item interface{}) {
	path := tr.reuse.path[:0]
	indexes := tr.reuse.indexes[:0]

	var node = tr.data
	var i int
	var parent *treeNode
	var index int
	var goingUp bool

	for node != nil || len(path) != 0 {
		if node == nil {
			node = path[len(path)-1]
			path = path[:len(path)-1]
			if len(path) == 0 {
				parent = nil
			} else {
				parent = path[len(path)-1]
			}
			i = indexes[len(indexes)-1]
			indexes = indexes[:len(indexes)-1]
			goingUp = true
		}

		if node.leaf {
			index = node.findItem(item)
			if index != -1 {
				// item found, remove the item and condense tree upwards
				copy(node.children[index:], node.children[index+1:])
				node.children[node.count-1] = nil
				node.count--
				path = append(path, node)
				tr.condense(path)
				goto done
			}
		}
		if !goingUp && !node.leaf && node.contains(bbox) { // go down
			path = append(path, node)
			indexes = append(indexes, i)
			i = 0
			parent = node
			node = (*treeNode)(node.children[0])
		} else if parent != nil { // go right
			i++
			if i == parent.count {
				node = nil
			} else {
				node = (*treeNode)(parent.children[i])
			}
			goingUp = false
		} else {
			node = nil
		}
	}
done:
	tr.reuse.path = path
	tr.reuse.indexes = indexes
	return
}
func (tr *RTree) condense(path []*treeNode) {
	// go through the path, removing empty nodes and updating bboxes
	var siblings []*treeNode
	for i := len(path) - 1; i >= 0; i-- {
		if path[i].count == 0 {
			if i > 0 {
				siblings = path[i-1].children[:path[i-1].count]
				index := -1
				for j := 0; j < len(siblings); j++ {
					if siblings[j] == path[i] {
						index = j
						break
					}
				}
				copy(siblings[index:], siblings[index+1:])
				siblings[len(siblings)-1] = nil
				path[i-1].count--
				//siblings = siblings[:len(siblings)-1]
				//path[i-1].children = siblings
			} else {
				tr.data = tr.createNode(nil) // clear tree
			}
		} else {
			tr.calcBBox(path[i])
		}
	}
}

// Count returns the number of items in the R-tree.
func (tr *RTree) Count() int {
	return tr.data.childCount()
}

// Traverse iterates over the entire R-tree and includes all nodes and items.
func (tr *RTree) Traverse(iter func(min, max []float64, level int, item interface{}) bool) bool {
	return tr.traverse(tr.data, iter)
}

func (tr *RTree) traverse(node *treeNode, iter func(min, max []float64, level int, item interface{}) bool) bool {
	if !iter(node.min, node.max, int(node.height), nil) {
		return false
	}
	if node.leaf {
		for i := 0; i < node.count; i++ {
			child := node.children[i]
			if !iter(child.min, child.max, 0, child.unsafeItem().item) {
				return false
			}
		}
	} else {
		for i := 0; i < node.count; i++ {
			child := node.children[i]
			if !tr.traverse(child, iter) {
				return false
			}
		}
	}
	return true
}

// Scan iterates over the entire R-tree
func (tr *RTree) Scan(iter func(item interface{}) bool) bool {
	return scan(tr.data, iter)
}

func scan(node *treeNode, iter func(item interface{}) bool) bool {
	if node.leaf {
		for i := 0; i < node.count; i++ {
			child := node.children[i]
			if !iter(child.unsafeItem().item) {
				return false
			}
		}
	} else {
		for i := 0; i < node.count; i++ {
			child := node.children[i]
			if !scan(child, iter) {
				return false
			}
		}
	}
	return true
}

// Bounds returns the bounding box of the entire R-tree
func (tr *RTree) Bounds() (min, max []float64) {
	if tr.data.count > 0 {
		return tr.data.min, tr.data.max
	}
	return make([]float64, tr.dims), make([]float64, tr.dims)
}

// Complexity returns the complexity of the R-tree. The higher the value, the
// more complex the tree. The value of 1 is the lowest.
func (tr *RTree) Complexity() float64 {
	var nodeCount int
	var itemCount int
	tr.Traverse(func(_, _ []float64, level int, _ interface{}) bool {
		if level == 0 {
			itemCount++
		} else {
			nodeCount++
		}
		return true
	})
	return float64(tr.maxEntries*nodeCount) / float64(itemCount)
}