1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
|
// Copyright 2020 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package subtle
import (
"encoding/binary"
"fmt"
)
const (
// PolyvalBlockSize is the block size (in bytes) that POLYVAL uses.
PolyvalBlockSize = 16
u32Sel0 uint32 = 0x11111111
u32Sel1 uint32 = 0x22222222
u32Sel2 uint32 = 0x44444444
u32Sel3 uint32 = 0x88888888
u64Sel0 uint64 = 0x1111111111111111
u64Sel1 uint64 = 0x2222222222222222
u64Sel2 uint64 = 0x4444444444444444
u64Sel3 uint64 = 0x8888888888888888
)
// Polyval (RFC 8452) is a universal hash function which operates on GF(2^128)
// and can be used for constructing a Message Authentication Code (MAC).
// See Section 3 of go/rfc/8452 for definition.
type Polyval interface {
// update the accumulator in the object with the blocks from data. If data
// is not a multiple of 16 bytes, it is automatically zero padded.
Update(data []byte)
// finish completes the polyval computation and returns the result.
Finish() [PolyvalBlockSize]byte
}
// fieldElement represents a value in GF(2^128).
// In order to reflect the Polyval standard and make binary.LittleEndian suitable
// for marshaling these values, the bits are stored in little endian order.
// For example:
// the coefficient of x^0 can be obtained by v.lo & 1.
// the coefficient of x^63 can be obtained by v.lo >> 63.
// the coefficient of x^64 can be obtained by v.hi & 1.
// the coefficient of x^127 can be obtained by v.hi >> 63.
type fieldElement struct {
lo, hi uint64
}
// polyval implements the POLYVAL function as defined by go/rfc/8452.
type polyval struct {
key fieldElement
acc fieldElement
}
// Assert that polyval implements Polyval interface
var _ Polyval = (*polyval)(nil)
// mul32 multiplies two 32 bit polynomials in GF(2^128) using Karatsuba multiplication.
func mul32(a uint32, b uint32) uint64 {
a0 := uint64(a & u32Sel0)
a1 := uint64(a & u32Sel1)
a2 := uint64(a & u32Sel2)
a3 := uint64(a & u32Sel3)
b0 := uint64(b & u32Sel0)
b1 := uint64(b & u32Sel1)
b2 := uint64(b & u32Sel2)
b3 := uint64(b & u32Sel3)
c0 := (a0 * b0) ^ (a1 * b3) ^ (a2 * b2) ^ (a3 * b1)
c1 := (a0 * b1) ^ (a1 * b0) ^ (a2 * b3) ^ (a3 * b2)
c2 := (a0 * b2) ^ (a1 * b1) ^ (a2 * b0) ^ (a3 * b3)
c3 := (a0 * b3) ^ (a1 * b2) ^ (a2 * b1) ^ (a3 * b0)
return (c0 & u64Sel0) | (c1 & u64Sel1) | (c2 & u64Sel2) | (c3 & u64Sel3)
}
// mul64 multiplies two 64 bit polynomials in GF(2^128) using Karatsuba multiplication.
func mul64(a uint64, b uint64) fieldElement {
a0 := uint32(a & 0xffffffff)
a1 := uint32(a >> 32)
b0 := uint32(b & 0xffffffff)
b1 := uint32(b >> 32)
lo := mul32(a0, b0)
hi := mul32(a1, b1)
mid := mul32(a0^a1, b0^b1) ^ lo ^ hi
return fieldElement{lo: lo ^ (mid << 32), hi: hi ^ (mid >> 32)}
}
// polyvalDot implements the dot operation defined by go/rfc/8452.
// dot(a, b) = a * b * x^-128.
// The value of the field element x^-128 is equal to x^127 + x^124 + x^121 + x^114 + 1.
// The result of this multiplication, dot(a, b), is another field element.
// The implementation here is inspired from BoringSSL's implementation of gcm_polyval_nohw().
// Ref: https://boringssl.googlesource.com/boringssl/+/master/crypto/fipsmodule/modes/gcm_nohw.c
func polyvalDot(a fieldElement, b fieldElement) fieldElement {
// Karatsuba multiplication. The product of |a| and |b| is stored in |r0| and |r1|
// Note there is no byte or bit reversal because we are evaluating POLYVAL.
r0 := mul64(a.lo, b.lo)
r1 := mul64(a.hi, b.hi)
mid := mul64(a.lo^a.hi, b.lo^b.hi)
mid.lo ^= r0.lo ^ r1.lo
mid.hi ^= r0.hi ^ r1.hi
r1.lo ^= mid.hi
r0.hi ^= mid.lo
// Now we multiply our 256-bit result by x^-128 and reduce.
// |r1| shifts into position and we must multiply |r0| by x^-128. We have:
//
// 1 = x^121 + x^126 + x^127 + x^128
// x^-128 = x^-7 + x^-2 + x^-1 + 1
//
// This is the GHASH reduction step, but with bits flowing in reverse.
// The x^-7, x^-2, and x^-1 terms shift bits past x^0, which would require
// another reduction steps. Instead, we gather the excess bits, incorporate
// them into |r0| and reduce once.
// Ref: slides 17-19 of https://crypto.stanford.edu/RealWorldCrypto/slides/gueron.pdf.
r0.hi ^= (r0.lo << 63) ^ (r0.lo << 62) ^ (r0.lo << 57)
// 1
r1.lo ^= r0.lo
r1.hi ^= r0.hi
// x^-1
r1.lo ^= r0.lo >> 1
r1.lo ^= r0.hi << 63
r1.hi ^= r0.hi >> 1
// x^-2
r1.lo ^= r0.lo >> 2
r1.lo ^= r0.hi << 62
r1.hi ^= r0.hi >> 2
// x^-7
r1.lo ^= r0.lo >> 7
r1.lo ^= r0.hi << 57
r1.hi ^= r0.hi >> 7
return r1
}
// NewPolyval returns a Polyval instance.
func NewPolyval(key []byte) (Polyval, error) {
if len(key) != PolyvalBlockSize {
return nil, fmt.Errorf("polyval: Invalid key size: %d", len(key))
}
return &polyval{
key: fieldElement{
lo: binary.LittleEndian.Uint64(key[:8]),
hi: binary.LittleEndian.Uint64(key[8:]),
},
}, nil
}
func (p *polyval) Update(data []byte) {
var block []byte
for len(data) > 0 {
if len(data) >= PolyvalBlockSize {
block = data[:PolyvalBlockSize]
data = data[PolyvalBlockSize:]
} else {
var partialBlock [PolyvalBlockSize]byte
copy(partialBlock[:], data)
block = partialBlock[:]
data = data[len(data):]
}
p.acc.lo ^= binary.LittleEndian.Uint64(block[:8])
p.acc.hi ^= binary.LittleEndian.Uint64(block[8:])
p.acc = polyvalDot(p.acc, p.key)
}
}
func (p *polyval) Finish() (hash [PolyvalBlockSize]byte) {
binary.LittleEndian.PutUint64(hash[:8], p.acc.lo)
binary.LittleEndian.PutUint64(hash[8:], p.acc.hi)
return
}
|