File: polyval.go

package info (click to toggle)
golang-github-tink-crypto-tink-go 2.4.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 12,952 kB
  • sloc: sh: 864; makefile: 6
file content (196 lines) | stat: -rw-r--r-- 5,995 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
// Copyright 2020 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

package subtle

import (
	"encoding/binary"
	"fmt"
)

const (
	// PolyvalBlockSize is the block size (in bytes) that POLYVAL uses.
	PolyvalBlockSize = 16

	u32Sel0 uint32 = 0x11111111
	u32Sel1 uint32 = 0x22222222
	u32Sel2 uint32 = 0x44444444
	u32Sel3 uint32 = 0x88888888

	u64Sel0 uint64 = 0x1111111111111111
	u64Sel1 uint64 = 0x2222222222222222
	u64Sel2 uint64 = 0x4444444444444444
	u64Sel3 uint64 = 0x8888888888888888
)

// Polyval (RFC 8452) is a universal hash function which operates on GF(2^128)
// and can be used for constructing a Message Authentication Code (MAC).
// See Section 3 of go/rfc/8452 for definition.
type Polyval interface {
	// update the accumulator in the object with the blocks from data. If data
	// is not a multiple of 16 bytes, it is automatically zero padded.
	Update(data []byte)

	// finish completes the polyval computation and returns the result.
	Finish() [PolyvalBlockSize]byte
}

// fieldElement represents a value in GF(2^128).
// In order to reflect the Polyval standard and make binary.LittleEndian suitable
// for marshaling these values, the bits are stored in little endian order.
// For example:
//   the coefficient of x^0 can be obtained by v.lo & 1.
//   the coefficient of x^63 can be obtained by v.lo >> 63.
//   the coefficient of x^64 can be obtained by v.hi & 1.
//   the coefficient of x^127 can be obtained by v.hi >> 63.
type fieldElement struct {
	lo, hi uint64
}

// polyval implements the POLYVAL function as defined by go/rfc/8452.
type polyval struct {
	key fieldElement
	acc fieldElement
}

// Assert that polyval implements Polyval interface
var _ Polyval = (*polyval)(nil)

// mul32 multiplies two 32 bit polynomials in GF(2^128) using Karatsuba multiplication.
func mul32(a uint32, b uint32) uint64 {
	a0 := uint64(a & u32Sel0)
	a1 := uint64(a & u32Sel1)
	a2 := uint64(a & u32Sel2)
	a3 := uint64(a & u32Sel3)

	b0 := uint64(b & u32Sel0)
	b1 := uint64(b & u32Sel1)
	b2 := uint64(b & u32Sel2)
	b3 := uint64(b & u32Sel3)

	c0 := (a0 * b0) ^ (a1 * b3) ^ (a2 * b2) ^ (a3 * b1)
	c1 := (a0 * b1) ^ (a1 * b0) ^ (a2 * b3) ^ (a3 * b2)
	c2 := (a0 * b2) ^ (a1 * b1) ^ (a2 * b0) ^ (a3 * b3)
	c3 := (a0 * b3) ^ (a1 * b2) ^ (a2 * b1) ^ (a3 * b0)

	return (c0 & u64Sel0) | (c1 & u64Sel1) | (c2 & u64Sel2) | (c3 & u64Sel3)
}

// mul64 multiplies two 64 bit polynomials in GF(2^128) using Karatsuba multiplication.
func mul64(a uint64, b uint64) fieldElement {
	a0 := uint32(a & 0xffffffff)
	a1 := uint32(a >> 32)

	b0 := uint32(b & 0xffffffff)
	b1 := uint32(b >> 32)

	lo := mul32(a0, b0)
	hi := mul32(a1, b1)
	mid := mul32(a0^a1, b0^b1) ^ lo ^ hi

	return fieldElement{lo: lo ^ (mid << 32), hi: hi ^ (mid >> 32)}
}

// polyvalDot implements the dot operation defined by go/rfc/8452.
// dot(a, b) = a * b * x^-128.
// The value of the field element x^-128 is equal to x^127 + x^124 + x^121 + x^114 + 1.
// The result of this multiplication, dot(a, b), is another field element.
// The implementation here is inspired from BoringSSL's implementation of gcm_polyval_nohw().
// Ref: https://boringssl.googlesource.com/boringssl/+/master/crypto/fipsmodule/modes/gcm_nohw.c
func polyvalDot(a fieldElement, b fieldElement) fieldElement {
	// Karatsuba multiplication. The product of |a| and |b| is stored in |r0| and |r1|
	// Note there is no byte or bit reversal because we are evaluating POLYVAL.
	r0 := mul64(a.lo, b.lo)
	r1 := mul64(a.hi, b.hi)

	mid := mul64(a.lo^a.hi, b.lo^b.hi)
	mid.lo ^= r0.lo ^ r1.lo
	mid.hi ^= r0.hi ^ r1.hi

	r1.lo ^= mid.hi
	r0.hi ^= mid.lo

	// Now we multiply our 256-bit result by x^-128 and reduce.
	// |r1| shifts into position and we must multiply |r0| by x^-128. We have:
	//
	//       1 = x^121 + x^126 + x^127 + x^128
	//  x^-128 = x^-7 + x^-2 + x^-1 + 1
	//
	// This is the GHASH reduction step, but with bits flowing in reverse.
	// The x^-7, x^-2, and x^-1 terms shift bits past x^0, which would require
	// another reduction steps. Instead, we gather the excess bits, incorporate
	// them into |r0| and reduce once.
	// Ref: slides 17-19 of https://crypto.stanford.edu/RealWorldCrypto/slides/gueron.pdf.
	r0.hi ^= (r0.lo << 63) ^ (r0.lo << 62) ^ (r0.lo << 57)

	// 1
	r1.lo ^= r0.lo
	r1.hi ^= r0.hi

	// x^-1
	r1.lo ^= r0.lo >> 1
	r1.lo ^= r0.hi << 63
	r1.hi ^= r0.hi >> 1

	// x^-2
	r1.lo ^= r0.lo >> 2
	r1.lo ^= r0.hi << 62
	r1.hi ^= r0.hi >> 2

	// x^-7
	r1.lo ^= r0.lo >> 7
	r1.lo ^= r0.hi << 57
	r1.hi ^= r0.hi >> 7

	return r1
}

// NewPolyval returns a Polyval instance.
func NewPolyval(key []byte) (Polyval, error) {
	if len(key) != PolyvalBlockSize {
		return nil, fmt.Errorf("polyval: Invalid key size: %d", len(key))
	}

	return &polyval{
		key: fieldElement{
			lo: binary.LittleEndian.Uint64(key[:8]),
			hi: binary.LittleEndian.Uint64(key[8:]),
		},
	}, nil
}

func (p *polyval) Update(data []byte) {
	var block []byte
	for len(data) > 0 {
		if len(data) >= PolyvalBlockSize {
			block = data[:PolyvalBlockSize]
			data = data[PolyvalBlockSize:]
		} else {
			var partialBlock [PolyvalBlockSize]byte
			copy(partialBlock[:], data)
			block = partialBlock[:]
			data = data[len(data):]
		}

		p.acc.lo ^= binary.LittleEndian.Uint64(block[:8])
		p.acc.hi ^= binary.LittleEndian.Uint64(block[8:])
		p.acc = polyvalDot(p.acc, p.key)
	}
}

func (p *polyval) Finish() (hash [PolyvalBlockSize]byte) {
	binary.LittleEndian.PutUint64(hash[:8], p.acc.lo)
	binary.LittleEndian.PutUint64(hash[8:], p.acc.hi)
	return
}