File: custom_key_manager_test.go

package info (click to toggle)
golang-github-tink-crypto-tink-go 2.4.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 12,952 kB
  • sloc: sh: 864; makefile: 6
file content (347 lines) | stat: -rw-r--r-- 11,870 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
// Copyright 2023 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

package registry_test

import (
	"bytes"
	"errors"
	"fmt"
	"testing"

	wrapperspb "google.golang.org/protobuf/types/known/wrapperspb"
	"google.golang.org/protobuf/proto"
	"github.com/tink-crypto/tink-go/v2/aead"
	"github.com/tink-crypto/tink-go/v2/aead/subtle"
	"github.com/tink-crypto/tink-go/v2/core/registry"
	"github.com/tink-crypto/tink-go/v2/insecurecleartextkeyset"
	"github.com/tink-crypto/tink-go/v2/internal/tinkerror"
	"github.com/tink-crypto/tink-go/v2/keyset"
	"github.com/tink-crypto/tink-go/v2/subtle/random"
	tinkpb "github.com/tink-crypto/tink-go/v2/proto/tink_go_proto"
)

const (
	customTypeURL = "type.googleapis.com/google.crypto.tink.CustomAesGcmKey"
)

// customKeyManager is a custom implementation of registry.KeyManager for AES GCM 128.
type customKeyManager struct{}

// Assert that customKeyManager implements the KeyManager interface.
var _ registry.KeyManager = (*customKeyManager)(nil)

func (km *customKeyManager) Primitive(serializedKey []byte) (any, error) {
	key := new(wrapperspb.BytesValue)
	if err := proto.Unmarshal(serializedKey, key); err != nil {
		return nil, fmt.Errorf("invalid key")
	}
	if len(key.GetValue()) != 16 {
		return nil, fmt.Errorf("invalid key")
	}
	return subtle.NewAESGCM(key.GetValue())
}

// NewKey is only used by registry.NewKey, and that function is only used by KMSEnvelopeAEAD.
// So there is no need to implement it.
func (km *customKeyManager) NewKey(serializedKeyFormat []byte) (proto.Message, error) {
	return nil, errors.New("not implemented")
}

func (km *customKeyManager) NewKeyData(serializedKeyFormat []byte) (*tinkpb.KeyData, error) {
	keyFormat := new(wrapperspb.StringValue)
	if err := proto.Unmarshal(serializedKeyFormat, keyFormat); err != nil {
		return nil, fmt.Errorf("invalid key format")
	}
	if keyFormat.GetValue() != "AEAD_AES_GCM_128" {
		return nil, fmt.Errorf("invalid key format")
	}
	keyValue := random.GetRandomBytes(16)
	key := &wrapperspb.BytesValue{
		Value: keyValue,
	}
	serializedKey, err := proto.Marshal(key)
	if err != nil {
		return nil, err
	}
	return &tinkpb.KeyData{
		TypeUrl:         customTypeURL,
		Value:           serializedKey,
		KeyMaterialType: km.KeyMaterialType(),
	}, nil
}

func (km *customKeyManager) DoesSupport(typeURL string) bool {
	return typeURL == customTypeURL
}

func (km *customKeyManager) TypeURL() string {
	return customTypeURL
}

func (km *customKeyManager) KeyMaterialType() tinkpb.KeyData_KeyMaterialType {
	return tinkpb.KeyData_SYMMETRIC
}

// aesGCM128KeyTemplate creates a AES GCM 128 KeyTemplate for customKeyManager.
func aesGCM128KeyTemplate() *tinkpb.KeyTemplate {
	format := &wrapperspb.StringValue{
		Value: "AEAD_AES_GCM_128",
	}
	serializedFormat, err := proto.Marshal(format)
	if err != nil {
		tinkerror.Fail(fmt.Sprintf("failed to marshal key format: %s", err))
	}
	return &tinkpb.KeyTemplate{
		TypeUrl:          customTypeURL,
		Value:            serializedFormat,
		OutputPrefixType: tinkpb.OutputPrefixType_RAW,
	}
}

// aesGCM128KeyToKeysetHandle creates a keyset.Handle with one custom AES GCM 128 key.
func aesGCM128KeyToKeysetHandle(rawAESKey []byte, keyID uint32, prefixType tinkpb.OutputPrefixType) (*keyset.Handle, error) {
	if len(rawAESKey) != 16 {
		return nil, fmt.Errorf("invalid key length")
	}
	key := &wrapperspb.BytesValue{Value: rawAESKey}
	serializedKey, err := proto.Marshal(key)
	if err != nil {
		return nil, err
	}
	keyData := &tinkpb.KeyData{
		TypeUrl:         customTypeURL,
		Value:           serializedKey,
		KeyMaterialType: tinkpb.KeyData_SYMMETRIC,
	}
	ks := &tinkpb.Keyset{
		PrimaryKeyId: keyID,
		Key: []*tinkpb.Keyset_Key{
			&tinkpb.Keyset_Key{
				KeyData:          keyData,
				Status:           tinkpb.KeyStatusType_ENABLED,
				KeyId:            keyID,
				OutputPrefixType: prefixType,
			},
		},
	}
	serializedKeyset, err := proto.Marshal(ks)
	if err != nil {
		return nil, err
	}
	return insecurecleartextkeyset.Read(keyset.NewBinaryReader(bytes.NewBuffer(serializedKeyset)))
}

func TestCreateEncryptDecrypt(t *testing.T) {
	handle, err := keyset.NewHandle(aesGCM128KeyTemplate())
	if err != nil {
		t.Fatalf("keyset.NewHandle(aesGCM128KeyTemplate()) err = %v, want nil", err)
	}
	primitive, err := aead.New(handle)
	if err != nil {
		t.Fatalf("aead.New(handle) err = %v, want nil", err)
	}

	plaintext := []byte("plaintext")
	associatedData := []byte("associatedData")

	ciphertext, err := primitive.Encrypt(plaintext, associatedData)
	if err != nil {
		t.Fatalf("primitive.Encrypt(plaintext, associatedData) err = %v, want nil", err)
	}
	decrypted, err := primitive.Decrypt(ciphertext, associatedData)
	if err != nil {
		t.Fatalf("primitive.Decrypt(ciphertext, associatedData) err = %v, want nil", err)
	}
	if !bytes.Equal(plaintext, decrypted) {
		t.Errorf("primitive.Decrypt(ciphertext, associatedData) = %q, want: %q", decrypted, plaintext)
	}
}

func TestImportExistingKeyDecryptsExistingCiphertext(t *testing.T) {
	rawAesKey := random.GetRandomBytes(16)
	plaintext := []byte("plaintext")
	associatedData := []byte("associatedData")

	// Create a AES GCM 128 ciphertext using rawAesKey.
	aesGCMForRawAesKey, err := subtle.NewAESGCM(rawAesKey)
	if err != nil {
		t.Fatalf("subtle.NewAESGCM(rawAesKey) err = %v, want nil", err)
	}
	ciphertext, err := aesGCMForRawAesKey.Encrypt(plaintext, associatedData)
	if err != nil {
		t.Fatalf("aesGCMForRawAesKey.Encrypt(plaintext, associatedData) err = %v, want nil", err)
	}

	// Import rawAesKey into a Tink keyset.Handle, and decrypt the ciphertext.
	handle, err := aesGCM128KeyToKeysetHandle(rawAesKey, 123, tinkpb.OutputPrefixType_RAW)
	if err != nil {
		t.Fatalf("aesGCM128KeyToKeysetHandle() err = %v, want nil", err)
	}
	primitive, err := aead.New(handle)
	if err != nil {
		t.Fatalf("aead.New(handle) err = %v, want nil", err)
	}
	gotPlaintext, err := primitive.Decrypt(ciphertext, associatedData)
	if err != nil {
		t.Fatalf("primitive.Decrypt(ciphertext, associatedData) err = %v, want nil", err)
	}
	if !bytes.Equal(plaintext, gotPlaintext) {
		t.Fatalf("primitive.Decrypt(ciphertext, associatedData) = %q, want: %q", gotPlaintext, plaintext)
	}
}

func TestEncryptAndDecryptWithTinkPrefix(t *testing.T) {
	// Create an AEAD for rawAesKey with output prefix type TINK.
	rawAesKey := random.GetRandomBytes(16)
	handle, err := aesGCM128KeyToKeysetHandle(rawAesKey, 0x11223344, tinkpb.OutputPrefixType_TINK)
	if err != nil {
		t.Fatalf("aesGCM128KeyToKeysetHandle() err = %v, want nil", err)
	}
	primitive, err := aead.New(handle)
	if err != nil {
		t.Fatalf("aead.New(handle) err = %v, want nil", err)
	}

	// Encrypt and decrypt.
	plaintext := []byte("plaintext")
	associatedData := []byte("associatedData")
	ciphertext, err := primitive.Encrypt(plaintext, associatedData)
	if err != nil {
		t.Fatalf("primitive.Encrypt(plaintext, associatedData) err = %v, want nil", err)
	}
	gotPlaintext, err := primitive.Decrypt(ciphertext, associatedData)
	if err != nil {
		t.Fatalf("primitive.Decrypt(ciphertext, associatedData) err = %v, want nil", err)
	}
	if !bytes.Equal(plaintext, gotPlaintext) {
		t.Fatalf("primitive.Decrypt(ciphertext, associatedData) = %q, want: %q", gotPlaintext, plaintext)
	}

	// Check that ciphertext has the correct prefix.
	gotPrefix := ciphertext[:5]
	wantPrefix := []byte{0x01, 0x11, 0x22, 0x33, 0x44}
	if !bytes.Equal(gotPrefix, wantPrefix) {
		t.Fatalf("ciphertext[:5] = %q, want: %q", gotPrefix, wantPrefix)
	}

	// Check that subtle.NewAESGCM with rawAesKey can decrypt the ciphertext if the prefix is removed.
	aesGCMForRawAesKey, err := subtle.NewAESGCM(rawAesKey)
	if err != nil {
		t.Fatalf("subtle.NewAESGCM(rawAesKey) err = %v, want nil", err)
	}
	gotPlaintext, err = aesGCMForRawAesKey.Decrypt(ciphertext[5:], associatedData)
	if err != nil {
		t.Fatalf("aesGCMForRawAesKey.Decrypt() err = %v, want nil", err)
	}
	if !bytes.Equal(plaintext, gotPlaintext) {
		t.Fatalf("aesGCMForRawAesKey.Decrypt() = %q, want: %q", gotPlaintext, plaintext)
	}
}

func TestMixedKeysetWorks(t *testing.T) {
	rawAesKey := random.GetRandomBytes(16)

	// Create a AES GCM 128 ciphertext using rawAesKey.
	subtlePrimitive, err := subtle.NewAESGCM(rawAesKey)
	if err != nil {
		t.Fatalf("subtle.NewAESGCM(rawAesKey) err = %v, want nil", err)
	}
	plaintext := []byte("plaintext")
	associatedData := []byte("associatedData")
	ciphertext, err := subtlePrimitive.Encrypt(plaintext, associatedData)
	if err != nil {
		t.Fatalf("subtlePrimitive.Encrypt(plaintext, associatedData) err = %v, want nil", err)
	}

	// Create handle2, which is a keyset.Handle that contains a customKeyManager key of rawAesKey and
	// a new, non-customKeyManager key.
	handle1, err := aesGCM128KeyToKeysetHandle(rawAesKey, 123, tinkpb.OutputPrefixType_RAW)
	if err != nil {
		t.Fatalf("aesGCM128KeyToKeysetHandle() err = %v, want nil", err)
	}
	manager := keyset.NewManagerFromHandle(handle1)
	keyID, err := manager.Add(aead.AES128CTRHMACSHA256KeyTemplate())
	if err != nil {
		t.Fatalf("manager.Add(aead.AES128CTRHMACSHA256KeyTemplate()) err = %v, want nil", err)
	}
	err = manager.SetPrimary(keyID)
	if err != nil {
		t.Fatalf("manager.SetPrimary(keyID) = %v", err)
	}
	handle2, err := manager.Handle()
	if err != nil {
		t.Fatalf("manager.Handle() err = %v", err)
	}

	primitive, err := aead.New(handle2)
	if err != nil {
		t.Fatalf("aead.New(handle2) err = %v", err)
	}
	gotPlaintext, err := primitive.Decrypt(ciphertext, associatedData)
	if err != nil {
		t.Fatalf("primitive.Decrypt(ciphertext, associatedData) err = %v, want nil", err)
	}
	if !bytes.Equal(plaintext, gotPlaintext) {
		t.Errorf("primitive.Decrypt(ciphertext, associatedData) = %q, want: %q", gotPlaintext, plaintext)
	}
}

func TestSerializeAndParseKeysetWorks(t *testing.T) {
	handle, err := keyset.NewHandle(aesGCM128KeyTemplate())
	if err != nil {
		t.Fatalf("keyset.NewHandle(aesGCM128KeyTemplate()) err = %v, want nil", err)
	}
	primitive, err := aead.New(handle)
	if err != nil {
		t.Fatalf("aead.New(handle) err = %v, want nil", err)
	}

	plaintext := []byte("plaintext")
	associatedData := []byte("associatedData")
	ciphertext, err := primitive.Encrypt(plaintext, associatedData)
	if err != nil {
		t.Fatalf("primitive.Encrypt(plaintext, associatedData) err = %v, want nil", err)
	}

	// Serialize the keyset.
	buff := &bytes.Buffer{}
	err = insecurecleartextkeyset.Write(handle, keyset.NewBinaryWriter(buff))
	if err != nil {
		t.Fatalf("insecurecleartextkeyset.Write(handle, keyset.NewBinaryWriter(buff)) = %v, want nil", err)
	}
	serializedKeyset := buff.Bytes()

	// Parse the keyset.
	parsedHandle, err := insecurecleartextkeyset.Read(
		keyset.NewBinaryReader(bytes.NewBuffer(serializedKeyset)))
	if err != nil {
		t.Fatalf("insecurecleartextkeyset.Read(keyset.NewBinaryReader(bytes.NewBuffer(serializedKeyset))) = %v, want nil", err)
	}

	primitive2, err := aead.New(parsedHandle)
	if err != nil {
		t.Fatalf("aead.New(parsedHandle) err = %v, want nil", err)
	}

	gotPlaintext, err := primitive2.Decrypt(ciphertext, associatedData)
	if err != nil {
		t.Fatalf("primitive2.Decrypt(ciphertext, associatedData) err = %v, want nil", err)
	}
	if !bytes.Equal(plaintext, gotPlaintext) {
		t.Errorf("primitive2.Decrypt(ciphertext, associatedData) = %q, want: %q", gotPlaintext, plaintext)
	}
}

func init() { registry.RegisterKeyManager(&customKeyManager{}) }