File: elliptic_curves.go

package info (click to toggle)
golang-github-tink-crypto-tink-go 2.4.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 12,952 kB
  • sloc: sh: 864; makefile: 6
file content (282 lines) | stat: -rw-r--r-- 6,786 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
// Copyright 2020 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

package subtle

import (
	"bytes"
	"crypto/elliptic"
	"crypto/rand"
	"errors"
	"fmt"
	"math/big"
)

// ECPublicKey represents a elliptic curve public key.
type ECPublicKey struct {
	elliptic.Curve
	Point ECPoint
}

// ECPrivateKey represents a elliptic curve private key.
type ECPrivateKey struct {
	PublicKey ECPublicKey
	D         *big.Int
}

// GetECPrivateKey converts a stored private key to ECPrivateKey.
func GetECPrivateKey(c elliptic.Curve, b []byte) *ECPrivateKey {
	d := new(big.Int)
	d.SetBytes(b)

	x, y := c.Params().ScalarBaseMult(b)
	pub := ECPublicKey{
		Curve: c,
		Point: ECPoint{
			X: x,
			Y: y,
		},
	}
	return &ECPrivateKey{
		PublicKey: pub,
		D:         d,
	}

}

// ECPoint represents a point on the elliptic curve.
type ECPoint struct {
	X, Y *big.Int
}

func (p *ECPrivateKey) getParams() *elliptic.CurveParams {
	return p.PublicKey.Curve.Params()
}

func getModulus(c elliptic.Curve) *big.Int {
	return c.Params().P
}

func fieldSizeInBits(c elliptic.Curve) int {
	t := big.NewInt(1)
	r := t.Sub(getModulus(c), t)
	return r.BitLen()
}

func fieldSizeInBytes(c elliptic.Curve) int {
	return (fieldSizeInBits(c) + 7) / 8
}

func encodingSizeInBytes(c elliptic.Curve, p string) (int, error) {
	cSize := fieldSizeInBytes(c)
	switch p {
	case "UNCOMPRESSED":
		return 2*cSize + 1, nil
	case "DO_NOT_USE_CRUNCHY_UNCOMPRESSED":
		return 2 * cSize, nil
	case "COMPRESSED":
		return cSize + 1, nil
	}
	return 0, fmt.Errorf("invalid point format :%s", p)

}

// PointEncode encodes a point into the format specified.
func PointEncode(c elliptic.Curve, pFormat string, pt ECPoint) ([]byte, error) {
	if !c.IsOnCurve(pt.X, pt.Y) {
		return nil, errors.New("curve check failed")
	}
	cSize := fieldSizeInBytes(c)
	y := pt.Y.Bytes()
	x := pt.X.Bytes()
	switch pFormat {
	case "UNCOMPRESSED":
		encoded := make([]byte, 2*cSize+1)
		copy(encoded[1+2*cSize-len(y):], y)
		copy(encoded[1+cSize-len(x):], x)
		encoded[0] = 4
		return encoded, nil
	case "DO_NOT_USE_CRUNCHY_UNCOMPRESSED":
		encoded := make([]byte, 2*cSize)
		if len(x) > cSize {
			x = bytes.Replace(x, []byte("\x00"), []byte{}, -1)
		}
		if len(y) > cSize {
			y = bytes.Replace(y, []byte("\x00"), []byte{}, -1)
		}
		copy(encoded[2*cSize-len(y):], y)
		copy(encoded[cSize-len(x):], x)
		return encoded, nil
	case "COMPRESSED":
		encoded := make([]byte, cSize+1)
		copy(encoded[1+cSize-len(x):], x)
		encoded[0] = 2
		if pt.Y.Bit(0) > 0 {
			encoded[0] = 3
		}
		return encoded, nil
	}
	return nil, errors.New("invalid point format")

}

// PointDecode decodes a encoded point to return an ECPoint
func PointDecode(c elliptic.Curve, pFormat string, e []byte) (*ECPoint, error) {
	cSize := fieldSizeInBytes(c)
	x, y := new(big.Int), new(big.Int)
	switch pFormat {
	case "UNCOMPRESSED":
		if len(e) != (2*cSize + 1) {
			return nil, errors.New("invalid point size")
		}
		if e[0] != 4 {
			return nil, errors.New("invalid point format")
		}
		x.SetBytes(e[1 : cSize+1])
		y.SetBytes(e[cSize+1:])
		if !c.IsOnCurve(x, y) {
			return nil, errors.New("invalid point")
		}
		return &ECPoint{
			X: x,
			Y: y,
		}, nil
	case "DO_NOT_USE_CRUNCHY_UNCOMPRESSED":
		if len(e) != 2*cSize {
			return nil, errors.New("invalid point size")
		}
		x.SetBytes(e[:cSize])
		y.SetBytes(e[cSize:])
		if !c.IsOnCurve(x, y) {
			return nil, errors.New("invalid point")
		}
		return &ECPoint{
			X: x,
			Y: y,
		}, nil
	case "COMPRESSED":
		if len(e) != cSize+1 {
			return nil, errors.New("compressed point has wrong length")
		}
		lsb := false
		if e[0] == 2 {
			lsb = false
		} else if e[0] == 3 {
			lsb = true
		} else {
			return nil, errors.New("invalid format")
		}
		x := new(big.Int)
		x.SetBytes(e[1:])
		if (x.Sign() == -1) || (x.Cmp(c.Params().P) != -1) {
			return nil, errors.New("x is out of range")
		}
		y := getY(x, lsb, c)
		return &ECPoint{
			X: x,
			Y: y,
		}, nil
	}
	return nil, fmt.Errorf("invalid format: %s", pFormat)
}

func getY(x *big.Int, lsb bool, c elliptic.Curve) *big.Int {
	// y² = x³ - 3x + b
	x3 := new(big.Int).Mul(x, x)
	x3.Mul(x3, x)

	threeX := new(big.Int).Lsh(x, 1)
	threeX.Add(threeX, x)
	b := c.Params().B
	p := c.Params().P

	x3.Sub(x3, threeX)
	x3.Add(x3, b)
	x3.ModSqrt(x3, p)
	e := uint(1)
	if lsb {
		e = 0
	}
	if e == x3.Bit(0) {
		x3 := x3.Sub(p, x3)
		x3.Mod(x3, p)
	}
	return x3
}

func validatePublicPoint(pub *ECPoint, priv *ECPrivateKey) error {
	if priv.PublicKey.Curve.IsOnCurve(pub.X, pub.Y) {
		return nil
	}
	return errors.New("invalid public key")
}

// ComputeSharedSecret is used to compute a shared secret using given private key and peer public key.
func ComputeSharedSecret(pub *ECPoint, priv *ECPrivateKey) ([]byte, error) {
	if err := validatePublicPoint(pub, priv); err != nil {
		return nil, err
	}

	x, y := priv.PublicKey.Curve.ScalarMult(pub.X, pub.Y, priv.D.Bytes())

	if x == nil {
		return nil, errors.New("shared key compute error")
	}
	// check if x,y are on the curve
	if err := validatePublicPoint(&ECPoint{X: x, Y: y}, priv); err != nil {
		return nil, errors.New("invalid shared key")
	}

	sharedSecret := make([]byte, maxSharedKeyLength(priv.PublicKey))
	return x.FillBytes(sharedSecret), nil
}

func maxSharedKeyLength(pub ECPublicKey) int {
	return (pub.Curve.Params().BitSize + 7) / 8
}

// GenerateECDHKeyPair will create a new private key for a given curve.
func GenerateECDHKeyPair(c elliptic.Curve) (*ECPrivateKey, error) {
	p, x, y, err := elliptic.GenerateKey(c, rand.Reader)
	if err != nil {
		return nil, err
	}
	return &ECPrivateKey{
		PublicKey: ECPublicKey{
			Curve: c,
			Point: ECPoint{
				X: x,
				Y: y,
			},
		},
		D: new(big.Int).SetBytes(p),
	}, nil

}

// GetCurve returns the elliptic.Curve for a given standard curve name.
func GetCurve(c string) (elliptic.Curve, error) {
	switch c {
	case "secp224r1", "NIST_P224", "P-224":
		return elliptic.P224(), nil
	case "secp256r1", "NIST_P256", "P-256", "EllipticCurveType_NIST_P256":
		return elliptic.P256(), nil
	case "secp384r1", "NIST_P384", "P-384", "EllipticCurveType_NIST_P384":
		return elliptic.P384(), nil
	case "secp521r1", "NIST_P521", "P-521", "EllipticCurveType_NIST_P521":
		return elliptic.P521(), nil
	default:
		return nil, errors.New("unsupported curve")
	}
}