File: aescmac.go

package info (click to toggle)
golang-github-tink-crypto-tink-go 2.4.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 12,952 kB
  • sloc: sh: 864; makefile: 6
file content (166 lines) | stat: -rw-r--r-- 5,192 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
// Copyright 2025 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

// Package aescmac implements AES-CMAC.
package aescmac

import (
	"crypto/aes"
	"crypto/cipher"
	"crypto/subtle"
	"fmt"
)

const (
	// BlockSize is the block size of AES.
	BlockSize = aes.BlockSize
	mul       = 0x87 // 0x87 is the generator of GF(2^128).
	pad       = byte(0x80)
)

// CMAC is an implementation of AES-CMAC as defined in RFC 4493.
type CMAC struct {
	bc     cipher.Block
	k1, k2 [BlockSize]byte
}

// multiplyByX multiplies an element in GF(2^128) by its generator.
//
// This is used to for key generation in section 2.3 of RFC 4493.
func mulByX(block []byte) {
	// This is computed as:
	// if block[0] >> 7 == 1:
	//   leftShift(block, 1) XOR 0x87
	// else:
	//   leftShift(block, 1)
	v := int(block[0] >> 7)
	for i := 0; i < BlockSize-1; i++ {
		block[i] = block[i]<<1 | block[i+1]>>7
	}
	block[BlockSize-1] = (block[BlockSize-1] << 1) ^ byte(subtle.ConstantTimeSelect(v, mul, 0x00))
}

// New returns a new CMAC instance.
func New(key []byte) (*CMAC, error) {
	if len(key) != 32 && len(key) != 24 && len(key) != 16 {
		return nil, fmt.Errorf("aescmac: invalid key size; got %d, want 16, 24, or 32", len(key))
	}

	bc, err := aes.NewCipher(key)
	if err != nil {
		return nil, fmt.Errorf("aescmac: could not obtain cipher: %v", err)
	}
	cmac := &CMAC{bc: bc}
	var zeroBlock [BlockSize]byte
	// Generate Subkeys
	cmac.bc.Encrypt(cmac.k1[:], zeroBlock[:])
	mulByX(cmac.k1[:])
	copy(cmac.k2[:], cmac.k1[:])
	mulByX(cmac.k2[:])

	return cmac, nil
}

// Compute computes the AES-CMAC of the given data.
//
// The timing of this function will only depend on len(data), and not leak any
// additional information about the key or the data.
func (c *CMAC) Compute(data []byte) []byte {
	numBlocksButLast := len(data) / BlockSize
	// The following "if" only depends on len(data).
	if len(data) > 0 && len(data)%BlockSize == 0 {
		numBlocksButLast--
	}

	output := make([]byte, BlockSize)
	// Process blocks from M_1, ..., M_(n-1). This is regardless of the
	// length of the last block.
	for i := 0; i < numBlocksButLast; i++ {
		subtle.XORBytes(output, data[:BlockSize], output)
		c.bc.Encrypt(output, output)
		data = data[BlockSize:]
	}

	// Last block M_n. If len(data) == 0, it simply sets lastBlock = 100...0.
	var lastBlock [BlockSize]byte
	// The following "if" only depends on len(data).
	if len(data) == BlockSize {
		// Full last block.
		subtle.XORBytes(lastBlock[:], data[:], c.k1[:])
	} else {
		// Either empty or partial last block.
		copy(lastBlock[:], data[:])
		lastBlock[len(data)] = pad
		subtle.XORBytes(lastBlock[:], lastBlock[:], c.k2[:])
	}
	subtle.XORBytes(output, output, lastBlock[:])
	c.bc.Encrypt(output, output)
	return output
}

// XOREndAndCompute computes the AES-CMAC over "data xorend last".
//
// data must be >= BlockSize.
// last and out must be == BlockSize.
//
// The `xorend` function is XOR(data[len(data)-BlockSize:], last)
//
// The timing of this function will only depend on len(data), and not leak any
// additional information about the key or the data.
func (c *CMAC) XOREndAndCompute(data, last []byte) ([]byte, error) {
	if len(last) != BlockSize {
		return nil, fmt.Errorf("aescmac: invalid size for \"last\"; got %d, want %d", len(last), BlockSize)
	}
	if len(data) < BlockSize {
		return nil, fmt.Errorf("aescmac: invalid size for \"data\"; got %d, want at least %d", len(data), BlockSize)
	}

	numBlocksButLast := len(data) / BlockSize
	// The following "if" only depends on len(data).
	if len(data)%BlockSize == 0 {
		numBlocksButLast--
	}

	// Starting position for the portion of`data` to be XORed with `last`.
	startPos := len(data) - BlockSize
	output := make([]byte, BlockSize)
	// Process blocks from M_0, ..., M_(n/BlockSize-1).
	for i := 0; i < numBlocksButLast; i++ {
		subtle.XORBytes(output, data[:BlockSize], output)
		if (i+1)*BlockSize > startPos {
			// XOR a portion of the current block with `last`.
			portionSize := (i+1)*BlockSize - startPos
			subtle.XORBytes(output[BlockSize-portionSize:], output[BlockSize-portionSize:], last[:portionSize])
			last = last[portionSize:]
		}
		c.bc.Encrypt(output, output)
		data = data[BlockSize:]
	}

	// Last block M_n.
	var lastBlock [BlockSize]byte
	subtle.XORBytes(lastBlock[:], data[:], last[:])
	// The following "if" only depends on len(data).
	if len(data) == BlockSize {
		// Full last block.
		subtle.XORBytes(lastBlock[:], lastBlock[:], c.k1[:])
	} else {
		// Partial last block.
		lastBlock[len(data)] = pad
		subtle.XORBytes(lastBlock[:], lastBlock[:], c.k2[:])
	}
	subtle.XORBytes(output, output, lastBlock[:])
	c.bc.Encrypt(output, output)
	return output, nil
}