1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
|
// Copyright 2025 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package mldsa
import (
"fmt"
"slices"
"golang.org/x/crypto/sha3"
)
// The encoding (and decoding) functions come in two variants:
//
// 1. The "unsigned" variant encodes unsigned rZq elements directly.
// Every element needs to be representable in the range [0, 2^bits).
// 2. The "signed" variant allows for more general elements that can be represented
// by signed words in the range [-a, 2^bits) for some lower bound a.
// Algorithm 16 (SimpleBitPack)
func (p *poly) simpleBitPack(bits int) []byte {
encoded := make([]byte, (degree*bits)/8)
for i := 0; i < len(encoded)*8; i++ {
cidx := i / bits
coff := i % bits
eidx := i >> 3
eoff := i & 7
bit := byte((p[cidx] >> coff) & 0x1)
encoded[eidx] ^= bit << eoff
}
return encoded
}
// Algorithm 17 (BitPack)
func (p *poly) bitPack(a rZq, bits int) []byte {
return p.subFrom(a).simpleBitPack(bits)
}
// Algorithm 16 (SimpleBitPack)
func (p *polyNTT) simpleBitPack(bits int) []byte {
encoded := make([]byte, (degree*bits)/8)
for i := 0; i < len(encoded)*8; i++ {
cidx := i / bits
coff := i % bits
eidx := i >> 3
eoff := i & 7
bit := byte((p[cidx] >> coff) & 0x1)
encoded[eidx] ^= bit << eoff
}
return encoded
}
// Algorithm 17 (BitPack)
func (p *polyNTT) bitPack(a rZq, bits int) []byte {
return p.subFrom(a).simpleBitPack(bits)
}
// Algorithm 18 (SimpleBitUnpack)
func simpleBitUnpackPoly(encoded []byte, bits int) *poly {
res := &poly{}
for i := 0; i < len(encoded)*8; i++ {
cidx := i / bits
coff := i % bits
eidx := i >> 3
eoff := i & 7
bit := rZq((encoded[eidx] >> eoff) & 0x1)
res[cidx] ^= bit << coff
}
return res
}
// Algorithm 19 (BitUnpack)
func bitUnpackPoly(encoded []byte, a rZq, bits int) *poly {
return simpleBitUnpackPoly(encoded, bits).subFrom(a)
}
// Algorithm 18 (SimpleBitUnpack)
func simpleBitUnpackPolyNTT(encoded []byte, bits int) *polyNTT {
res := &polyNTT{}
for i := 0; i < len(encoded)*8; i++ {
cidx := i / bits
coff := i % bits
eidx := i >> 3
eoff := i & 7
bit := rZq((encoded[eidx] >> eoff) & 0x1)
res[cidx] ^= bit << coff
}
return res
}
// Algorithm 19 (BitUnpack)
func bitUnpackPolyNTT(encoded []byte, a rZq, bits int) *polyNTT {
return simpleBitUnpackPolyNTT(encoded, bits).subFrom(a)
}
// Algorithm 20 (HintBitPack)
func (v vector) hintBitPack(par *params) []byte {
res := make([]byte, par.omega+par.k)
index := 0
for i := 0; i < par.k; i++ {
for j := 0; j < degree; j++ {
if v[i][j] != 0 {
res[index] = byte(j)
index++
}
}
res[par.omega+i] = byte(index)
}
return res
}
// Algorithm 21 (HintBitUnpack)
func (par *params) hintBitUnpackVector(encoded []byte) (vector, error) {
res := makeZeroVector(par.k)
index := 0
for i := 0; i < par.k; i++ {
end := int(encoded[par.omega+i])
if end < index || end > par.omega {
return nil, fmt.Errorf("invalid hint bit vector")
}
first := index
for index < end {
if index > first && encoded[index-1] >= encoded[index] {
return nil, fmt.Errorf("invalid hint bit vector")
}
res[i][encoded[index]] = 1
index++
}
}
for i := index; i < par.omega; i++ {
if encoded[i] != 0 {
return nil, fmt.Errorf("invalid hint bit vector")
}
}
return res, nil
}
// Encode encodes a public key. This is Algorithm 22 (pkEncode) of the ML-DSA specification.
func (pk *publicKey) Encode() []byte {
res := make([]byte, 32)
copy(res[0:32], pk.rho[:])
for i := range pk.t1 {
res = slices.Concat(res, pk.t1[i].simpleBitPack(qBits-d))
}
return res
}
// DecodePublicKey decodes a public key. This is Algorithm 23 (pkDecode) of the ML-DSA specification.
func (par *params) DecodePublicKey(pkEnc []byte) (*publicKey, error) {
if len(pkEnc) != 32+32*par.k*(qBits-d) {
return nil, fmt.Errorf("invalid public key length")
}
var rho [32]byte
copy(rho[:], pkEnc[0:32])
res := makeZeroVector(par.k)
for i := range res {
pos := 32 + i*32*(qBits-d)
res[i] = simpleBitUnpackPoly(pkEnc[pos:pos+32*(qBits-d)], qBits-d)
}
// We additionally cache the hash of the public key.
var tr [64]byte
sha3.ShakeSum256(tr[:], pkEnc)
return &publicKey{rho, res, tr, par}, nil
}
// Encode encodes a secret key. This is Algorithm 24 (skEncode) of the ML-DSA specification.
func (sk *secretKey) Encode() []byte {
par := sk.par
res := make([]byte, 32+32+64)
copy(res[0:32], sk.rho[:])
copy(res[32:64], sk.kK[:])
copy(res[64:128], sk.tr[:])
for i := range sk.s1 {
res = slices.Concat(res, sk.s1[i].bitPack(rZq(par.eta), par.etaBits))
}
for i := range sk.s2 {
res = slices.Concat(res, sk.s2[i].bitPack(rZq(par.eta), par.etaBits))
}
for i := range sk.t0 {
res = slices.Concat(res, sk.t0[i].bitPack(rZq(1<<(d-1)), d))
}
return res
}
// DecodeSecretKey decodes a secret key. This is Algorithm 25 (skDecode) of the ML-DSA specification.
func (par *params) DecodeSecretKey(skEnc []byte) (*secretKey, error) {
if len(skEnc) != 32+32+64+32*((par.l+par.k)*par.etaBits+d*par.k) {
return nil, fmt.Errorf("invalid secret key length")
}
var rho [32]byte
var K [32]byte
var tr [64]byte
copy(rho[:], skEnc[0:32])
copy(K[:], skEnc[32:64])
copy(tr[:], skEnc[64:128])
s1 := makeZeroVector(par.l)
s2 := makeZeroVector(par.k)
t0 := makeZeroVector(par.k)
sStep := 32 * par.etaBits
for i := range s1 {
pos := 128 + i*sStep
s1[i] = bitUnpackPoly(skEnc[pos:pos+sStep], rZq(par.eta), par.etaBits)
}
for i := range s2 {
pos := 128 + par.l*sStep + i*sStep
s2[i] = bitUnpackPoly(skEnc[pos:pos+sStep], rZq(par.eta), par.etaBits)
}
for i := range t0 {
pos := 128 + par.l*sStep + par.k*sStep + i*32*d
t0[i] = bitUnpackPoly(skEnc[pos:pos+32*d], rZq(1<<(d-1)), d)
}
return &secretKey{rho, K, tr, s1, s2, t0, par}, nil
}
// Algorithm 26 (SigEncode)
func (par *params) sigEncode(c []byte, z vector, h vector) []byte {
res := make([]byte, par.lambda/4)
copy(res, c)
for i := range z {
res = slices.Concat(res, z[i].bitPack(rZq(1<<par.log2Gamma1), par.log2Gamma1+1))
}
return slices.Concat(res, h.hintBitPack(par))
}
// Algorithm 27 (SigDecode)
func (par *params) sigDecode(sigma []byte) ([]byte, vector, vector, error) {
if len(sigma) != par.lambda/4+par.l*32*(1+par.log2Gamma1)+par.omega+par.k {
return nil, nil, nil, fmt.Errorf("invalid signature length")
}
c := make([]byte, par.lambda/4)
copy(c, sigma[0:par.lambda/4])
z := makeZeroVector(par.l)
for i := range z {
pos := par.lambda/4 + i*32*(par.log2Gamma1+1)
z[i] = bitUnpackPoly(sigma[pos:pos+32*(par.log2Gamma1+1)], rZq(1<<par.log2Gamma1), par.log2Gamma1+1)
}
pos := par.lambda/4 + par.l*32*(par.log2Gamma1+1)
h, err := par.hintBitUnpackVector(sigma[pos:])
if err != nil {
return nil, nil, nil, err
}
return c, z, h, nil
}
// Algorithm 28 (w1Encode)
func (par *params) w1Encode(w1 vector) []byte {
res := make([]byte, 0)
for i := range w1 {
res = slices.Concat(res, w1[i].simpleBitPack(par.w1Bits))
}
return res
}
|