File: mldsa.go

package info (click to toggle)
golang-github-tink-crypto-tink-go 2.4.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 12,952 kB
  • sloc: sh: 864; makefile: 6
file content (327 lines) | stat: -rw-r--r-- 8,960 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
// Copyright 2025 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

// Package mldsa implements ML-DSA as specified in NIST FIPS 204 (https://doi.org/10.6028/NIST.FIPS.204).
package mldsa

import (
	"bytes"
	"fmt"
	"math/bits"
	"slices"

	"crypto/rand"

	"golang.org/x/crypto/sha3"
)

const (
	// Base ring modulus.
	q = 8380417
	// Base ring storage bits.
	qBits = 23
	// Root of unity modulo q.
	zeta = 1753
	// Inverse of 256 modulo q.
	inv256 = 8347681
	// Degree of polynomial modulus (= X^256 + 1).
	degree = 256

	// Dropped bits.
	d = 13
)

type params struct {
	// ML-DSA parameters (see https://doi.org/10.6028/NIST.FIPS.204).
	tau        int
	lambda     int
	log2Gamma1 int
	gamma2     uint32
	k          int
	l          int
	eta        int
	omega      int
	// Precomputed derived parameters.
	etaBits int
	w1Bits  int
}

type paramsOpts struct {
	tau        int
	lambda     int
	log2Gamma1 int
	invGamma2  uint32
	k          int
	l          int
	eta        int
	omega      int
}

func newParams(par paramsOpts) *params {
	gamma2 := (q - 1) / par.invGamma2
	etaBits := bits.Len(uint(2 * par.eta))
	w1Bits := bits.Len(uint((q-1)/(2*gamma2) - 1))
	return &params{par.tau, par.lambda, par.log2Gamma1, gamma2, par.k, par.l, par.eta, par.omega, etaBits, w1Bits}
}

var (
	// MLDSA44 defines parameters for ML-DSA-44.
	MLDSA44 = newParams(paramsOpts{
		tau:        39,
		lambda:     128,
		log2Gamma1: 17,
		invGamma2:  88,
		k:          4,
		l:          4,
		eta:        2,
		omega:      80,
	})
	// MLDSA65 defines parameters for ML-DSA-65.
	MLDSA65 = newParams(paramsOpts{
		tau:        49,
		lambda:     192,
		log2Gamma1: 19,
		invGamma2:  32,
		k:          6,
		l:          5,
		eta:        4,
		omega:      55,
	})
	// MLDSA87 defines parameters for ML-DSA-87.
	MLDSA87 = newParams(paramsOpts{
		tau:        60,
		lambda:     256,
		log2Gamma1: 19,
		invGamma2:  32,
		k:          8,
		l:          7,
		eta:        2,
		omega:      75,
	})
)

// publicKey represents a ML-DSA public key.
type publicKey struct {
	rho [32]byte
	t1  vector
	// Cached public key hash.
	tr [64]byte
	// Corresponding parameters.
	par *params
}

// secretKey represents a ML-DSA secret key.
type secretKey struct {
	rho [32]byte
	kK  [32]byte
	tr  [64]byte
	s1  vector
	s2  vector
	t0  vector
	// Corresponding parameters.
	par *params
}

// Algorithm 32 (ExpandA)
func (par *params) expandA(rho [32]byte) matrixNTT {
	res := makeZeroMatrixNTT(par.k, par.l)
	var rhop [32 + 2]byte
	copy(rhop[:], rho[:])
	for r := range par.k {
		rhop[len(rho)+1] = byte(r)
		for s := range par.l {
			rhop[len(rho)] = byte(s)
			res[r][s] = rejectNTTPoly(rhop)
		}
	}
	return res
}

// Algorithm 33 (ExpandS)
func (par *params) expandS(rho [64]byte) (vector, vector) {
	res1 := makeZeroVector(par.l)
	res2 := makeZeroVector(par.k)
	var rhop [64 + 2]byte
	copy(rhop[:], rho[:])
	for i := range par.l {
		rhop[len(rho)] = byte(i)
		rhop[len(rho)+1] = byte(0)
		res1[i] = par.rejectBoundedPoly(rhop)
	}
	for i := range par.k {
		rhop[len(rho)] = byte(i + par.l)
		rhop[len(rho)+1] = byte(0)
		res2[i] = par.rejectBoundedPoly(rhop)
	}
	return res1, res2
}

// Algorithm 34 (ExpandMask)
func (par *params) expandMask(rho [64]byte, mu int) vector {
	res := makeZeroVector(par.l)
	var rhop [64 + 2]byte
	copy(rhop[:], rho[:])
	for i := range par.l {
		rhop[len(rho)] = byte((mu + i) & 0xFF)
		rhop[len(rho)+1] = byte((mu + i) >> 8)
		v := make([]byte, 32*(par.log2Gamma1+1))
		sha3.ShakeSum256(v, rhop[:])
		res[i] = bitUnpackPoly(v, rZq(1<<par.log2Gamma1), par.log2Gamma1+1)
	}
	return res
}

// Algorithm 6 (KeyGen_internal)
func (par *params) keyGenInternal(seed [32]byte) (*publicKey, *secretKey) {
	H := sha3.NewShake256()
	H.Write(append(seed[:], byte(par.k), byte(par.l)))
	var rho [32]byte
	H.Read(rho[:])
	var rhop [64]byte
	H.Read(rhop[:])
	var K [32]byte
	H.Read(K[:])
	Ah := par.expandA(rho)
	s1, s2 := par.expandS(rhop)
	t := Ah.mul(s1.ntt()).intt().add(s2)
	t1, t0 := t.power2Round()
	pk := &publicKey{rho, t1, [64]byte{}, par}
	sha3.ShakeSum256(pk.tr[:], pk.Encode())
	return pk, &secretKey{rho, K, pk.tr, s1, s2, t0, par}
}

func (sk *secretKey) signInternalWithMu(mu [64]byte, rnd [32]byte) []byte {
	par := sk.par
	beta := uint32(par.tau * par.eta)
	s1h := sk.s1.ntt()
	s2h := sk.s2.ntt()
	t0h := sk.t0.ntt()
	Ah := par.expandA(sk.rho)
	var rhopp [64]byte
	sha3.ShakeSum256(rhopp[:], slices.Concat(sk.kK[:], rnd[:], mu[:]))
	for kappa := 0; ; kappa += par.l {
		y := par.expandMask(rhopp, kappa)
		w := Ah.mul(y.ntt()).intt()
		w1 := w.highBits(par.gamma2)
		ct := make([]byte, par.lambda/4)
		sha3.ShakeSum256(ct, slices.Concat(mu[:], par.w1Encode(w1)))
		c := par.sampleInBall(ct)
		ch := c.ntt()
		cs1 := ch.scalarMul(s1h).intt()
		cs2 := ch.scalarMul(s2h).intt()
		z := y.add(cs1)
		r0 := w.sub(cs2).lowBits(par.gamma2)
		if z.infinityNorm() < (1<<par.log2Gamma1)-beta && r0.infinityNorm() < par.gamma2-beta {
			ct0 := ch.scalarMul(t0h).intt()
			h := ct0.neg().makeHint(par.gamma2, w.sub(cs2).add(ct0))
			if ct0.infinityNorm() < par.gamma2 && h.numOnes() <= par.omega {
				return par.sigEncode(ct, z, h)
			}
		}
	}
}

func (pk *publicKey) verifyInternalWithMu(mu [64]byte, sigma []byte) error {
	par := pk.par
	ct, z, h, err := par.sigDecode(sigma)
	if err != nil {
		return err
	}
	Ah := par.expandA(pk.rho)
	c := par.sampleInBall(ct)
	Azh := Ah.mul(z.ntt())
	t1sh := pk.t1.scalePower2().ntt()
	wp := Azh.sub(c.ntt().scalarMul(t1sh)).intt()
	w1p := wp.useHint(par.gamma2, h)
	ctp := make([]byte, par.lambda/4)
	sha3.ShakeSum256(ctp, slices.Concat(mu[:], par.w1Encode(w1p)))
	beta := uint32(par.tau * par.eta)
	if !(z.infinityNorm() < (1<<par.log2Gamma1)-beta && bytes.Compare(ct, ctp) == 0) {
		return fmt.Errorf("invalid signature")
	}
	return nil
}

// Algorithm 7 (Sign_internal)
func (sk *secretKey) signInternal(Mp []byte, rnd [32]byte) []byte {
	var mu [64]byte
	sha3.ShakeSum256(mu[:], slices.Concat(sk.tr[:], Mp))
	return sk.signInternalWithMu(mu, rnd)
}

// Algorithm 8 (Verify_internal)
func (pk *publicKey) verifyInternal(Mp []byte, sigma []byte) error {
	var mu [64]byte
	sha3.ShakeSum256(mu[:], slices.Concat(pk.tr[:], Mp))
	return pk.verifyInternalWithMu(mu, sigma)
}

// KeyGen generates a new public and secret key. This is Algorithm 1 (KeyGen) of the ML-DSA specification.
func (par *params) KeyGen() (*publicKey, *secretKey) {
	var seed [32]byte
	rand.Read(seed[:])
	return par.keyGenInternal(seed)
}

// KeyGenFromSeed generates a public and secret key from a specified seed.
func (par *params) KeyGenFromSeed(seed [32]byte) (*publicKey, *secretKey) {
	return par.keyGenInternal(seed)
}

// SignWithMu signs with a precomputed mu.
func (sk *secretKey) SignWithMu(mu [64]byte) []byte {
	var rnd [32]byte
	rand.Read(rnd[:])
	return sk.signInternalWithMu(mu, rnd)
}

// SignDeterministicWithMu signs deterministically with a precomputed mu. It uses a fixed all zeroes randomness.
func (sk *secretKey) SignDeterministicWithMu(mu [64]byte) []byte {
	var zeroes [32]byte
	return sk.signInternalWithMu(mu, zeroes)
}

// Sign is the standard signing function. This is Algorithm 2 (Sign) of the ML-DSA specification.
func (sk *secretKey) Sign(M []byte, ctx []byte) ([]byte, error) {
	if len(ctx) > 255 {
		return nil, fmt.Errorf("context too long")
	}
	var rnd [32]byte
	rand.Read(rnd[:])
	return sk.signInternal(slices.Concat([]byte{0, byte(len(ctx))}, ctx, M), rnd), nil
}

// SignDeterministic signs deterministically. This is Algorithm 2 (Sign) of the ML-DSA specification with a fixed all zeroes randomness.
func (sk *secretKey) SignDeterministic(M []byte, ctx []byte) ([]byte, error) {
	if len(ctx) > 255 {
		return nil, fmt.Errorf("context too long")
	}
	var zeroes [32]byte
	return sk.signInternal(slices.Concat([]byte{0, byte(len(ctx))}, ctx, M), zeroes), nil
}

// VerifyWithMu verifies a signature with a precomputed mu.
// Returns nil if the signature is valid for mu, otherwise returns an error.
func (pk *publicKey) VerifyWithMu(mu [64]byte, sigma []byte) error {
	return pk.verifyInternalWithMu(mu, sigma)
}

// Verify verifies a signature. This is Algorithm 3 (Verify) of the ML-DSA specification.
// Returns nil if the signature is valid for the message and context, otherwise returns an error.
func (pk *publicKey) Verify(M []byte, sigma []byte, ctx []byte) error {
	if len(ctx) > 255 {
		return fmt.Errorf("context too long")
	}
	return pk.verifyInternal(slices.Concat([]byte{0, byte(len(ctx))}, ctx, M), sigma)
}