1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
|
// Copyright 2020 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package subtle_test
import (
"bytes"
"encoding/hex"
"fmt"
"testing"
"github.com/tink-crypto/tink-go/v2/kwp/subtle"
"github.com/tink-crypto/tink-go/v2/subtle/random"
"github.com/tink-crypto/tink-go/v2/testutil"
)
func TestWrapUnwrap(t *testing.T) {
kek := random.GetRandomBytes(16)
cipher, err := subtle.NewKWP(kek)
if err != nil {
t.Fatalf("failed to make kwp, error: %v", err)
}
for i := uint32(16); i < 128; i++ {
t.Run(fmt.Sprintf("MessageSize%d", i), func(t *testing.T) {
toWrap := random.GetRandomBytes(i)
wrapped, err := cipher.Wrap(toWrap)
if err != nil {
t.Fatalf("failed to wrap, error: %v", err)
}
unwrapped, err := cipher.Unwrap(wrapped)
if err != nil {
t.Fatalf("failed to unwrap, error: %v", err)
}
if !bytes.Equal(toWrap, unwrapped) {
t.Error("unwrapped doesn't match original key")
}
})
}
}
func TestKeySizes(t *testing.T) {
for i := 0; i < 255; i++ {
expectSuccess := i == 16 || i == 32
t.Run(fmt.Sprintf("KeySize%d", i), func(t *testing.T) {
_, err := subtle.NewKWP(make([]byte, i))
if expectSuccess && err != nil {
t.Errorf("failed to create KWP: %v", err)
}
if !expectSuccess && err == nil {
t.Error("created KWP with invalid key size")
}
})
}
}
func TestInvalidWrappingSizes(t *testing.T) {
kek := random.GetRandomBytes(16)
cipher, err := subtle.NewKWP(kek)
if err != nil {
t.Fatalf("failed to make kwp, error: %v", err)
}
for i := 0; i < 16; i++ {
t.Run(fmt.Sprintf("KeySize%d", i), func(t *testing.T) {
if _, err := cipher.Wrap(make([]byte, i)); err == nil {
t.Error("wrapped a short key")
}
})
}
}
type KwpCase struct {
testutil.WycheproofCase
Key string `json:"key"`
Message string `json:"msg"`
Ciphertext string `json:"ct"`
}
type KwpGroup struct {
testutil.WycheproofGroup
KeySize int `json:"keySize"`
Tests []*KwpCase `json:"tests"`
}
type KwpSuite struct {
testutil.WycheproofSuite
Groups []*KwpGroup `json:"testGroups"`
}
func TestWycheproofCases(t *testing.T) {
suite := new(KwpSuite)
if err := testutil.PopulateSuite(suite, "kwp_test.json"); err != nil {
t.Fatalf("testutil.PopulateSuite: %v", err)
}
for _, group := range suite.Groups {
if group.KeySize == 192 {
continue
}
for _, test := range group.Tests {
caseName := fmt.Sprintf("%s-%s(%d):Case-%d",
suite.Algorithm, group.Type, group.KeySize, test.CaseID)
t.Run(caseName, func(t *testing.T) { runWycheproofCase(t, test) })
}
}
}
func runWycheproofCase(t *testing.T, testCase *KwpCase) {
kek, err := hex.DecodeString(testCase.Key)
if err != nil {
t.Fatalf("hex.DecodeString(testCase.Key) => %v", err)
}
msg, err := hex.DecodeString(testCase.Message)
if err != nil {
t.Fatalf("hex.DecodeString(testCase.Message) => %v", err)
}
ct, err := hex.DecodeString(testCase.Ciphertext)
if err != nil {
t.Fatalf("hex.DecodeString(testCase.Ciphertext) => %v", err)
}
cipher, err := subtle.NewKWP(kek)
if err != nil {
switch testCase.Result {
case "valid":
t.Fatalf("cannot create kwp, error: %v", err)
case "invalid", "acceptable":
return
}
}
wrapped, err := cipher.Wrap(msg)
switch testCase.Result {
case "valid":
if err != nil {
t.Errorf("cannot wrap, error: %v", err)
} else if !bytes.Equal(ct, wrapped) {
t.Error("wrapped key mismatches test vector")
}
case "invalid":
if err == nil && bytes.Equal(ct, wrapped) {
t.Error("no error and wrapped key matches test vector for invalid case")
}
case "acceptable":
if err == nil && !bytes.Equal(ct, wrapped) {
t.Error("no error and wrapped key mismatches test vector for acceptable case")
}
}
unwrapped, err := cipher.Unwrap(ct)
switch testCase.Result {
case "valid":
if err != nil {
t.Errorf("cannot unwrap, error: %v", err)
} else if !bytes.Equal(msg, unwrapped) {
t.Error("unwrapped key mismatches test vector")
}
case "invalid":
if err == nil {
t.Error("no error unwrapping invalid case")
}
case "acceptable":
if err == nil && !bytes.Equal(msg, unwrapped) {
t.Error("no error and unwrapped key mismatches plaintext")
}
}
}
|