File: prf_set.go

package info (click to toggle)
golang-github-tink-crypto-tink-go 2.4.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 12,952 kB
  • sloc: sh: 864; makefile: 6
file content (103 lines) | stat: -rw-r--r-- 4,038 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
// Copyright 2020 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

// Package prf contains utilities to calculate pseudo random function families.
package prf

import (
	"fmt"

	"github.com/tink-crypto/tink-go/v2/monitoring"
	_ "github.com/tink-crypto/tink-go/v2/prf/aescmac" // To register the AES-CMAC PRF key manager.
	_ "github.com/tink-crypto/tink-go/v2/prf/hkdf"       // To register the HKDF PRF key manager.
	_ "github.com/tink-crypto/tink-go/v2/prf/hmac"       // To register the HMAC PRF key manager.
)

// The PRF interface is an abstraction for an element of a pseudo-random
// function family, selected by a key.
//
// It has the following properties:
//   - It is deterministic. ComputePRF(input, length) will always return the
//     same output if the same key is used. ComputePRF(input, length1) will be a
//     prefix of ComputePRF(input, length2) if length1 < length2 and the same
//     key is used.
//   - It is indistinguishable from a random function.  Given the evaluation of
//     n different inputs, an attacker cannot distinguish between the PRF and
//     random bytes on an input different from the n that are known.
//
// Use cases for PRF are deterministic redaction of PII, keyed hash functions,
// creating sub IDs that do not allow joining with the original dataset without
// knowing the key.
//
// While PRFs can be used in order to prove authenticity of a message, using
// the MAC interface is recommended for that use case, as it has support for
// verification, avoiding the security problems that often happen during
// verification, and having automatic support for key rotation. It also allows
// for non-deterministic MAC algorithms.
type PRF interface {
	// Computes the PRF selected by the underlying key on input and
	// returns the first outputLength bytes.
	//
	// When choosing this parameter keep the birthday paradox in mind.
	// If you have 2^n different inputs that your system has to handle
	// set the output length (in bytes) to at least
	// ceil(n/4 + 4)
	//
	// This corresponds to 2*n + 32 bits, meaning a collision will occur
	// with a probability less than 1:2^32. When in doubt, request a
	// security review.
	//
	// Returns a non-nil error if the algorithm fails or if the output of
	// the underlying algorithm is less than outputLength.
	ComputePRF(input []byte, outputLength uint32) ([]byte, error)
}

type monitoredPRF struct {
	prf    PRF
	keyID  uint32
	logger monitoring.Logger
}

var _ PRF = (*monitoredPRF)(nil)

func (w *monitoredPRF) ComputePRF(input []byte, outputLength uint32) ([]byte, error) {
	p, err := w.prf.ComputePRF(input, outputLength)
	if err != nil {
		w.logger.LogFailure()
		return nil, err
	}
	w.logger.Log(w.keyID, len(input))
	return p, nil
}

// Set is a set of PRFs.
//
// A Tink Keyset can be converted into a set of PRFs using this primitive.
// Every key in the keyset corresponds to a PRF in the prf.Set.  Every PRF in
// the set is given an ID, which is the same ID as the key id in the Keyset.
type Set struct {
	// PrimaryID is the key ID marked as primary in the corresponding Keyset.
	PrimaryID uint32
	// PRFs maps key IDs to their corresponding PRF.
	PRFs map[uint32]PRF
}

// ComputePrimaryPRF is equivalent to set.PRFs[set.PrimaryID].ComputePRF().
func (s Set) ComputePrimaryPRF(input []byte, outputLength uint32) ([]byte, error) {
	prf, ok := s.PRFs[s.PrimaryID]
	if !ok {
		return nil, fmt.Errorf("Could not find primary ID %d in prf.Set", s.PrimaryID)
	}
	return prf.ComputePRF(input, outputLength)
}