File: key.go

package info (click to toggle)
golang-github-tink-crypto-tink-go 2.4.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 12,952 kB
  • sloc: sh: 864; makefile: 6
file content (476 lines) | stat: -rw-r--r-- 15,106 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
// Copyright 2024 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

package ecdsa

import (
	"bytes"
	"crypto/ecdh"
	"fmt"

	"github.com/tink-crypto/tink-go/v2/insecuresecretdataaccess"
	"github.com/tink-crypto/tink-go/v2/internal/outputprefix"
	"github.com/tink-crypto/tink-go/v2/key"
	"github.com/tink-crypto/tink-go/v2/secretdata"
)

// Variant is the prefix variant of an ECDSA key.
//
// It describes the format of the signature. For ECDSA there are four options:
//
//   - TINK: prepends '0x01<big endian key id>' to the signature.
//   - CRUNCHY: prepends '0x00<big endian key id>' to the signature.
//   - LEGACY: appends a 0-byte to the input message before computing the
//     signature, then prepends '0x00<big endian key id>' to the signature.
//   - NO_PREFIX: adds no prefix to the signature.
type Variant int

const (
	// VariantUnknown is the default value of Variant.
	VariantUnknown Variant = iota
	// VariantTink prefixes '0x01<big endian key id>' to the signature.
	VariantTink
	// VariantCrunchy prefixes '0x00<big endian key id>' to the signature.
	VariantCrunchy
	// VariantLegacy appends '0x00' to the input message BEFORE computing
	// the signature, then prepends '0x00<big endian key id>' to the signature.
	VariantLegacy
	// VariantNoPrefix does not prefix the signature with the key id.
	VariantNoPrefix
)

func (variant Variant) String() string {
	switch variant {
	case VariantTink:
		return "TINK"
	case VariantCrunchy:
		return "CRUNCHY"
	case VariantLegacy:
		return "LEGACY"
	case VariantNoPrefix:
		return "NO_PREFIX"
	default:
		return "UNKNOWN"
	}
}

// CurveType is the curve type of the ECDSA key.
type CurveType int

const (
	// UnknownCurveType is the default value of CurveType.
	UnknownCurveType CurveType = iota
	// NistP256 is the NIST P-256 curve.
	NistP256
	// NistP384 is the NIST P-384 curve.
	NistP384
	// NistP521 is the NIST P-521 curve.
	NistP521
)

func (ct CurveType) String() string {
	switch ct {
	case NistP256:
		return "NIST_P256"
	case NistP384:
		return "NIST_P384"
	case NistP521:
		return "NIST_P521"
	default:
		return "UNKNOWN"
	}
}

// HashType is the hash type of the ECDSA key.
type HashType int

const (
	// UnknownHashType is the default value of HashType.
	UnknownHashType HashType = iota
	// SHA256 is the SHA256 hash type.
	SHA256
	// SHA384 is the SHA384 hash type.
	SHA384
	// SHA512 is the SHA512 hash type.
	SHA512
)

func (ht HashType) String() string {
	switch ht {
	case SHA256:
		return "SHA256"
	case SHA384:
		return "SHA384"
	case SHA512:
		return "SHA512"
	default:
		return "UNKNOWN"
	}
}

// SignatureEncoding is the signature encoding of the ECDSA key.
type SignatureEncoding int

const (
	// UnknownSignatureEncoding is the default value of SignatureEncoding.
	UnknownSignatureEncoding SignatureEncoding = iota
	// DER is the DER encoding.
	DER
	// IEEEP1363 is the IEEE P1363 encoding.
	IEEEP1363
)

func (encoding SignatureEncoding) String() string {
	switch encoding {
	case DER:
		return "DER"
	case IEEEP1363:
		return "IEEE_P1363"
	default:
		return "UNKNOWN"
	}
}

// Parameters represents the parameters of an ECDSA key.
type Parameters struct {
	curveType         CurveType
	hashType          HashType
	signatureEncoding SignatureEncoding
	variant           Variant
}

var _ key.Parameters = (*Parameters)(nil)

// CurveType the curve type.
func (p *Parameters) CurveType() CurveType { return p.curveType }

// HashType returns the hash type.
func (p *Parameters) HashType() HashType { return p.hashType }

// SignatureEncoding returns the signature encoding.
func (p *Parameters) SignatureEncoding() SignatureEncoding { return p.signatureEncoding }

// Variant returns the output prefix variant of the key.
func (p *Parameters) Variant() Variant { return p.variant }

func checkValidHashForCurve(curveType CurveType, hashType HashType) error {
	switch curveType {
	case NistP256:
		if hashType != SHA256 {
			return fmt.Errorf("ecdsa.Parameters: unsupported hash type for curve type: %v, %v", curveType, hashType)
		}
	case NistP384:
		if hashType != SHA384 && hashType != SHA512 {
			return fmt.Errorf("ecdsa.Parameters: unsupported hash type for curve type: %v, %v", curveType, hashType)
		}
	case NistP521:
		if hashType != SHA512 {
			return fmt.Errorf("ecdsa.Parameters: unsupported hash type for curve type: %v, %v", curveType, hashType)
		}
	default:
		return fmt.Errorf("ecdsa.Parameters: unsupported curve type: %v", curveType)
	}
	return nil
}

func checkValidHash(hashType HashType) error {
	switch hashType {
	case SHA256, SHA384, SHA512:
		return nil
	default:
		return fmt.Errorf("unsupported hash type: %v", hashType)
	}
}

func checkValidSignatureEncoding(signatureEncoding SignatureEncoding) error {
	switch signatureEncoding {
	case DER, IEEEP1363:
		return nil
	default:
		return fmt.Errorf("unsupported signature encoding: %v", signatureEncoding)
	}
}

func checkValidVariant(variant Variant) error {
	switch variant {
	case VariantTink, VariantCrunchy, VariantLegacy, VariantNoPrefix:
		return nil
	default:
		return fmt.Errorf("unsupported output prefix variant: %v", variant)
	}
}

func validateParameters(p *Parameters) error {
	if p == nil {
		return fmt.Errorf("parameters is nil")
	}
	if err := checkValidHash(p.HashType()); err != nil {
		return fmt.Errorf("ecdsa.Parameters: %v", err)
	}
	if err := checkValidSignatureEncoding(p.SignatureEncoding()); err != nil {
		return fmt.Errorf("ecdsa.Parameters: %v", err)
	}
	if err := checkValidVariant(p.Variant()); err != nil {
		return fmt.Errorf("ecdsa.Parameters: %v", err)
	}
	if err := checkValidHashForCurve(p.CurveType(), p.HashType()); err != nil {
		return err
	}
	return nil
}

// NewParameters creates a new ECDSA Parameters value.
func NewParameters(curveType CurveType, hashType HashType, encoding SignatureEncoding, variant Variant) (*Parameters, error) {
	p := &Parameters{
		curveType:         curveType,
		hashType:          hashType,
		signatureEncoding: encoding,
		variant:           variant,
	}
	if err := validateParameters(p); err != nil {
		return nil, fmt.Errorf("ecdsa.NewParameters: %v", err)
	}
	return p, nil
}

// HasIDRequirement tells whether the key has an ID requirement.
func (p *Parameters) HasIDRequirement() bool { return p.variant != VariantNoPrefix }

// Equal tells whether this parameters value is equal to other.
func (p *Parameters) Equal(other key.Parameters) bool {
	actualParams, ok := other.(*Parameters)
	return ok && p.HasIDRequirement() == actualParams.HasIDRequirement() &&
		p.curveType == actualParams.curveType &&
		p.hashType == actualParams.hashType &&
		p.signatureEncoding == actualParams.signatureEncoding &&
		p.variant == actualParams.variant
}

func calculateOutputPrefix(variant Variant, idRequirement uint32) ([]byte, error) {
	switch variant {
	case VariantTink:
		return outputprefix.Tink(idRequirement), nil
	case VariantCrunchy, VariantLegacy:
		return outputprefix.Legacy(idRequirement), nil
	case VariantNoPrefix:
		return nil, nil
	default:
		return nil, fmt.Errorf("invalid output prefix variant: %v", variant)
	}
}

// ecdhCurveFromCurveType returns the corresponding ecdh.Curve value from ct.
func ecdhCurveFromCurveType(ct CurveType) (ecdh.Curve, error) {
	switch ct {
	case NistP256:
		return ecdh.P256(), nil
	case NistP384:
		return ecdh.P384(), nil
	case NistP521:
		return ecdh.P521(), nil
	default:
		return nil, fmt.Errorf("invalid curve type: %v", ct)
	}
}

// PublicKey represents an ECDSA public key.
type PublicKey struct {
	publicPoint   []byte
	idRequirement uint32
	outputPrefix  []byte
	parameters    *Parameters
}

var _ key.Key = (*PublicKey)(nil)

// NewPublicKey creates a new ECDSA PublicKey value from a public point,
//
// The point is expected to be encoded uncompressed as per [SEC 1 v2.0, Section
// 2.3.3].
//
// [SEC 1 v2.0, Section 2.3.3]: https://www.secg.org/sec1-v2.pdf#page=17.08
func NewPublicKey(publicPoint []byte, idRequirement uint32, parameters *Parameters) (*PublicKey, error) {
	if err := validateParameters(parameters); err != nil {
		return nil, fmt.Errorf("ecdsa.NewPublicKey: %v", err)
	}
	if parameters.Variant() == VariantNoPrefix && idRequirement != 0 {
		return nil, fmt.Errorf("ecdsa.NewPublicKey: key ID must be zero for VariantNoPrefix")
	}
	outputPrefix, err := calculateOutputPrefix(parameters.Variant(), idRequirement)
	if err != nil {
		return nil, fmt.Errorf("ecdsa.NewPublicKey: %v", err)
	}
	curve, err := ecdhCurveFromCurveType(parameters.CurveType())
	if err != nil {
		return nil, fmt.Errorf("ecdsa.NewPublicKey: %v", err)
	}
	// Validate the point.
	if _, err := curve.NewPublicKey(publicPoint); err != nil {
		return nil, fmt.Errorf("ecdsa.NewPublicKey: point validation failed: %v", err)
	}
	return &PublicKey{
		publicPoint:   bytes.Clone(publicPoint),
		idRequirement: idRequirement,
		outputPrefix:  outputPrefix,
		parameters:    parameters,
	}, nil
}

// PublicPoint returns the public key uncompressed point.
//
// Point format as per [SEC 1 v2.0, Section 2.3.3].
//
// [SEC 1 v2.0, Section 2.3.3]: https://www.secg.org/sec1-v2.pdf#page=17.08
func (k *PublicKey) PublicPoint() []byte { return bytes.Clone(k.publicPoint) }

// Parameters returns the parameters of this key.
func (k *PublicKey) Parameters() key.Parameters { return k.parameters }

// IDRequirement tells whether the key ID and whether it is required.
func (k *PublicKey) IDRequirement() (uint32, bool) {
	return k.idRequirement, k.Parameters().HasIDRequirement()
}

// OutputPrefix returns the output prefix of this key.
func (k *PublicKey) OutputPrefix() []byte { return bytes.Clone(k.outputPrefix) }

// Equal tells whether this key value is equal to other.
func (k *PublicKey) Equal(other key.Key) bool {
	actualKey, ok := other.(*PublicKey)
	return ok && k.Parameters().Equal(actualKey.Parameters()) &&
		k.idRequirement == actualKey.idRequirement &&
		bytes.Equal(k.publicPoint, actualKey.publicPoint) &&
		bytes.Equal(k.outputPrefix, actualKey.outputPrefix)
}

// PrivateKey represents an ECDSA private key.
type PrivateKey struct {
	publicKey       *PublicKey
	privateKeyValue secretdata.Bytes
}

var _ key.Key = (*PrivateKey)(nil)

// NewPrivateKey creates a new ECDSA PrivateKey object from a secret private
// key value and parameters.
//
// The private key value must be octet encoded as per [SEC 1 v2.0, Section
// 2.3.5].
//
// [SEC 1 v2.0, Section 2.3.5]: https://www.secg.org/sec1-v2.pdf#page=17.08
func NewPrivateKey(privateKeyValue secretdata.Bytes, idRequirement uint32, params *Parameters) (*PrivateKey, error) {
	if err := validateParameters(params); err != nil {
		return nil, fmt.Errorf("ecdsa.NewPrivateKey: %v", err)
	}
	curve, err := ecdhCurveFromCurveType(params.CurveType())
	if err != nil {
		return nil, fmt.Errorf("ecdsa.NewPrivateKey: %v", err)
	}
	ecdhPrivateKey, err := curve.NewPrivateKey(privateKeyValue.Data(insecuresecretdataaccess.Token{}))
	if err != nil {
		return nil, fmt.Errorf("ecdsa.NewPrivateKey: point validation failed: %v", err)
	}
	publicPoint := ecdhPrivateKey.PublicKey().Bytes()
	publicKey, err := NewPublicKey(publicPoint, idRequirement, params)
	if err != nil {
		return nil, fmt.Errorf("ecdsa.NewPrivateKey: %v", err)
	}
	privKey := &PrivateKey{
		publicKey:       publicKey,
		privateKeyValue: privateKeyValue,
	}
	return privKey, nil
}

// validatePrivateKey checks that the private key value is valid with respect to
// the public key.
//
// It checks that an [ecdh.PrivateKey] can be constructed from the private key
// value and that the [ecdh.PublicKey] of that [ecdh.PrivateKey] is equal to the
// public key constructed from [PublicKey].
func validatePrivateKey(publicKey *PublicKey, privateKeyValue secretdata.Bytes) error {
	curve, err := ecdhCurveFromCurveType(publicKey.parameters.CurveType())
	if err != nil {
		return err
	}
	ecdhPrivateKey, err := curve.NewPrivateKey(privateKeyValue.Data(insecuresecretdataaccess.Token{}))
	if err != nil {
		return fmt.Errorf("point validation failed: %v", err)
	}
	ecdhPublicKeyFromPublicKey, err := curve.NewPublicKey(publicKey.publicPoint)
	if err != nil {
		// Should never happen.
		return fmt.Errorf("invalid public key point: %v", err)
	}
	if !ecdhPrivateKey.PublicKey().Equal(ecdhPublicKeyFromPublicKey) {
		return fmt.Errorf("invalid private key value")
	}
	return nil
}

// NewPrivateKeyFromPublicKey creates a new ECDSA PrivateKey object from a
// public key and private key value.
//
// The private key value must be octet encoded as per [SEC 1 v2.0, Section
// 2.3.5].
//
// [SEC 1 v2.0, Section 2.3.5]: https://www.secg.org/sec1-v2.pdf#page=17.08
func NewPrivateKeyFromPublicKey(publicKey *PublicKey, privateKeyValue secretdata.Bytes) (*PrivateKey, error) {
	// PublicKey can be either nil, PublicKey{} or a valid PublicKey created with
	// NewPublicKey.
	if publicKey == nil {
		return nil, fmt.Errorf("ecdsa.NewPrivateKeyFromPublicKey: publicKey is nil")
	}
	// This should suffice to rule out the empty PublicKey{} case.
	// If parameters are not nil, we know the public key is valid (e.g., it
	// contains a valid point).
	if publicKey.parameters == nil {
		return nil, fmt.Errorf("ecdsa.NewPrivateKeyFromPublicKey: invalid public key")
	}

	// Check that the private key value is valid with respect to the public key.
	if err := validatePrivateKey(publicKey, privateKeyValue); err != nil {
		return nil, fmt.Errorf("ecdsa.NewPrivateKeyFromPublicKey: %v", err)
	}

	privKey := &PrivateKey{
		publicKey:       publicKey,
		privateKeyValue: privateKeyValue,
	}
	return privKey, nil
}

// PrivateKeyValue returns the private key value as [secretdata.Bytes].
//
// The returned private key value has length equal to the size of the curve.
func (k *PrivateKey) PrivateKeyValue() secretdata.Bytes { return k.privateKeyValue }

// PublicKey returns the corresponding public key as [key.Key].
func (k *PrivateKey) PublicKey() (key.Key, error) { return k.publicKey, nil }

// Parameters returns the parameters of this key as [key.Parameters].
func (k *PrivateKey) Parameters() key.Parameters { return k.publicKey.Parameters() }

// IDRequirement tells whether the key ID and whether it is required.
func (k *PrivateKey) IDRequirement() (uint32, bool) { return k.publicKey.IDRequirement() }

// OutputPrefix returns the output prefix of this key.
func (k *PrivateKey) OutputPrefix() []byte { return k.publicKey.OutputPrefix() }

// Equal tells whether this key object is equal to other.
func (k *PrivateKey) Equal(other key.Key) bool {
	actualKey, ok := other.(*PrivateKey)
	return ok && k.publicKey.Equal(actualKey.publicKey) &&
		k.privateKeyValue.Equal(actualKey.privateKeyValue)
}