File: key.go

package info (click to toggle)
golang-github-tink-crypto-tink-go 2.4.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 12,952 kB
  • sloc: sh: 864; makefile: 6
file content (394 lines) | stat: -rw-r--r-- 13,442 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
// Copyright 2024 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

package rsassapss

import (
	"bytes"
	"crypto/rsa"
	"fmt"
	"math/big"

	"github.com/tink-crypto/tink-go/v2/insecuresecretdataaccess"
	"github.com/tink-crypto/tink-go/v2/internal/internalapi"
	"github.com/tink-crypto/tink-go/v2/internal/outputprefix"
	"github.com/tink-crypto/tink-go/v2/key"
	"github.com/tink-crypto/tink-go/v2/secretdata"
)

// Variant is the prefix variant of an RSA-SSA-PSS key.
//
// It describes the format of the signature. For RSA-SSA-PSS there are
// four options:
//
//   - TINK: prepends '0x01<big endian key id>' to the signature.
//   - CRUNCHY: prepends '0x00<big endian key id>' to the signature.
//   - LEGACY: appends a 0-byte to the input message before computing the
//     signature, then prepends '0x00<big endian key id>' to the signature.
//   - NO_PREFIX: adds no prefix to the signature.
type Variant int

const (
	// VariantUnknown is the default value of Variant.
	VariantUnknown Variant = iota
	// VariantTink prefixes '0x01<big endian key id>' to the signature.
	VariantTink
	// VariantCrunchy prefixes '0x00<big endian key id>' to the signature.
	VariantCrunchy
	// VariantLegacy appends a 0-byte to input message BEFORE computing the signature,
	// signature, then prepends '0x00<big endian key id>' to signature.
	VariantLegacy
	// VariantNoPrefix does not prefix the signature with the key id.
	VariantNoPrefix
)

func (variant Variant) String() string {
	switch variant {
	case VariantTink:
		return "TINK"
	case VariantCrunchy:
		return "CRUNCHY"
	case VariantLegacy:
		return "LEGACY"
	case VariantNoPrefix:
		return "NO_PREFIX"
	default:
		return "UNKNOWN"
	}
}

// HashType is the curve type of the RSA-SSA-PSS key.
type HashType int

const (
	// UnknownHashType is the default value of HashType.
	UnknownHashType HashType = iota
	// SHA256 is the SHA256 hash type.
	SHA256
	// SHA384 is the SHA384 hash type.
	SHA384
	// SHA512 is the SHA512 hash type.
	SHA512
)

func (ht HashType) String() string {
	switch ht {
	case SHA256:
		return "SHA256"
	case SHA384:
		return "SHA384"
	case SHA512:
		return "SHA512"
	default:
		return "UNKNOWN"
	}
}

const (
	// f4 is the public exponent 65537.
	f4          = 65537
	maxExponent = 1<<31 - 1
)

// Parameters represents the parameters of an RSA-SSA-PSS key.
type Parameters struct {
	modulusSizeBits int
	sigHashType     HashType
	mgf1HashType    HashType
	publicExponent  int
	saltLengthBytes int
	variant         Variant
}

var _ key.Parameters = (*Parameters)(nil)

// SigHashType returns the signature hash type.
func (p *Parameters) SigHashType() HashType { return p.sigHashType }

// MGF1HashType returns the MGF1 hash type.
func (p *Parameters) MGF1HashType() HashType { return p.mgf1HashType }

// PublicExponent returns the public exponent.
func (p *Parameters) PublicExponent() int { return p.publicExponent }

// SaltLengthBytes returns the salt length in bytes.
func (p *Parameters) SaltLengthBytes() int { return p.saltLengthBytes }

// ModulusSizeBits returns the modulus size in bits.
func (p *Parameters) ModulusSizeBits() int { return p.modulusSizeBits }

// Variant returns the output prefix variant of the key.
func (p *Parameters) Variant() Variant { return p.variant }

func checkValidHash(hashType HashType) error {
	if hashType == SHA256 || hashType == SHA384 || hashType == SHA512 {
		return nil
	}
	return fmt.Errorf("unsupported hash type: %v", hashType)
}

// ParametersValues contains the values of a set of RSA-SSA-PSS parameters.
type ParametersValues struct {
	ModulusSizeBits int
	SigHashType     HashType
	MGF1HashType    HashType
	PublicExponent  int
	SaltLengthBytes int
}

// NewParameters creates a new RSA-SSA-PSS Parameters value.
func NewParameters(values ParametersValues, variant Variant) (*Parameters, error) {
	// These are consistent with the checks by tink-java and tink-cc.
	if values.ModulusSizeBits < 2048 {
		return nil, fmt.Errorf("rsassapss.NewParameters: invalid modulus size: %v, want >= 2048", values.ModulusSizeBits)
	}
	if values.PublicExponent < f4 {
		return nil, fmt.Errorf("rsassapss.NewParameters: invalid public exponent: %v, want >= %v", values.PublicExponent, f4)
	}
	// Similar check as in crypto/rsa.
	if values.PublicExponent > maxExponent {
		return nil, fmt.Errorf("rsassapss.NewParameters: invalid public exponent: %v, want <= %v", values.PublicExponent, maxExponent)
	}
	// These are consistent with the checks by tink-java and tink-cc.
	if values.PublicExponent%2 != 1 {
		return nil, fmt.Errorf("rsassapss.NewParameters: invalid public exponent: %v, want odd", values.PublicExponent)
	}
	if values.SaltLengthBytes < 0 {
		return nil, fmt.Errorf("rsassapss.NewParameters: invalid salt length bytes: %v, want >= 0", values.SaltLengthBytes)
	}
	if err := checkValidHash(values.SigHashType); err != nil {
		return nil, err
	}
	if values.MGF1HashType != values.SigHashType {
		return nil, fmt.Errorf("rsassapss.NewParameters: mismatched MGF1 hash type: %v, want %v", values.MGF1HashType, values.SigHashType)
	}
	if variant == VariantUnknown {
		return nil, fmt.Errorf("unsupported output prefix variant: %v", variant)
	}
	return &Parameters{
		modulusSizeBits: values.ModulusSizeBits,
		sigHashType:     values.SigHashType,
		mgf1HashType:    values.MGF1HashType,
		publicExponent:  values.PublicExponent,
		saltLengthBytes: values.SaltLengthBytes,
		variant:         variant,
	}, nil
}

// HasIDRequirement tells whether the key has an ID requirement.
func (p *Parameters) HasIDRequirement() bool { return p.variant != VariantNoPrefix }

// Equal tells whether this parameters object is equal to other.
func (p *Parameters) Equal(other key.Parameters) bool {
	that, ok := other.(*Parameters)
	return ok && p.HasIDRequirement() == that.HasIDRequirement() &&
		p.modulusSizeBits == that.modulusSizeBits &&
		p.sigHashType == that.sigHashType &&
		p.mgf1HashType == that.mgf1HashType &&
		p.publicExponent == that.publicExponent &&
		p.saltLengthBytes == that.saltLengthBytes &&
		p.variant == that.variant
}

// PublicKey represents a function that can verify RSA-SSA-PSS signatures
// as defined in [RFC 3447, Section 8.1].
type PublicKey struct {
	modulus       []byte // Big integer value in big-endian encoding.
	idRequirement uint32
	outputPrefix  []byte
	parameters    *Parameters
}

var _ key.Key = (*PublicKey)(nil)

func calculateOutputPrefix(variant Variant, idRequirement uint32) ([]byte, error) {
	switch variant {
	case VariantTink:
		return outputprefix.Tink(idRequirement), nil
	case VariantCrunchy, VariantLegacy:
		return outputprefix.Legacy(idRequirement), nil
	case VariantNoPrefix:
		return nil, nil
	default:
		return nil, fmt.Errorf("invalid output prefix variant: %v", variant)
	}
}

// NewPublicKey creates a new RSA-SSA-PSS PublicKey object from modulus,
// ID requirement and parameters.
//
// modulus is a Big integer value in big-endian encoding. Parameters must be
// non-nil.
func NewPublicKey(modulus []byte, idRequirement uint32, parameters *Parameters) (*PublicKey, error) {
	// This is set to UnknownHashType if the parameters is a struct literal.
	if parameters.SigHashType() == UnknownHashType {
		return nil, fmt.Errorf("rsassapss.NewPublicKey: invalid parameters")
	}
	modulusBigInt := new(big.Int).SetBytes(modulus)
	if modulusBigInt.BitLen() != parameters.ModulusSizeBits() {
		return nil, fmt.Errorf("rsassapss.NewPublicKey: invalid modulus bit-length: %v, want %v", modulusBigInt.BitLen(), parameters.ModulusSizeBits())
	}
	if parameters.Variant() == VariantNoPrefix && idRequirement != 0 {
		return nil, fmt.Errorf("rsassapss.NewPublicKey: key ID must be zero for VariantNoPrefix")
	}
	outputPrefix, err := calculateOutputPrefix(parameters.Variant(), idRequirement)
	if err != nil {
		return nil, fmt.Errorf("rsassapss.NewPublicKey: %v", err)
	}
	return &PublicKey{
		modulus:       modulusBigInt.Bytes(),
		idRequirement: idRequirement,
		outputPrefix:  outputPrefix,
		parameters:    parameters,
	}, nil
}

// Modulus returns the public key modulus.
func (k *PublicKey) Modulus() []byte { return bytes.Clone(k.modulus) }

// Parameters returns the parameters of this key.
func (k *PublicKey) Parameters() key.Parameters { return k.parameters }

// IDRequirement returns the key ID requirement and whether it is required.
func (k *PublicKey) IDRequirement() (uint32, bool) {
	return k.idRequirement, k.Parameters().HasIDRequirement()
}

// OutputPrefix returns the output prefix of this key.
func (k *PublicKey) OutputPrefix() []byte { return bytes.Clone(k.outputPrefix) }

// Equal tells whether this key object is equal to other.
func (k *PublicKey) Equal(other key.Key) bool {
	actualKey, ok := other.(*PublicKey)
	return ok && bytes.Equal(k.modulus, actualKey.modulus) &&
		k.idRequirement == actualKey.idRequirement &&
		k.parameters.Equal(actualKey.parameters)
}

// PrivateKey represents a function that can produce RSA-SSA-PSS
// signatures as defined in [RFC 3447, Section 8.1].
type PrivateKey struct {
	publicKey  *PublicKey
	privateKey *rsa.PrivateKey
}

// PrivateKeyValues contains the values of a private key.
type PrivateKeyValues struct {
	P, Q secretdata.Bytes
	D    secretdata.Bytes
	// dp, dq and QInv must be computed by the Go library.
	// See https://pkg.go.dev/crypto/rsa#PrivateKey.
}

// privateKeySelfCheck signs a test message with a private key and verifies a
// the signature with the corresponding public key.
//
// This is a security check to ensure that the private key is valid.
func privateKeySelfCheck(privateKey *PrivateKey) error {
	signer, err := NewSigner(privateKey, internalapi.Token{})
	if err != nil {
		return err
	}
	verifier, err := NewVerifier(privateKey.publicKey, internalapi.Token{})
	if err != nil {
		return err
	}
	testMessage := []byte("Tink and Wycheproof.")
	signature, err := signer.Sign(testMessage)
	if err != nil {
		return err
	}
	return verifier.Verify(signature, testMessage)
}

// NewPrivateKey creates a new RSA-SSA-PSS PrivateKey value from a public key
// and private key values.
//
// publicKey must be non-nil.
func NewPrivateKey(publicKey *PublicKey, opts PrivateKeyValues) (*PrivateKey, error) {
	if publicKey.parameters == nil {
		return nil, fmt.Errorf("rsassapss.NewPrivateKey: invalid public key")
	}
	privateKey := rsa.PrivateKey{
		PublicKey: rsa.PublicKey{
			N: new(big.Int).SetBytes(publicKey.Modulus()),
			E: publicKey.parameters.PublicExponent(),
		},
		D: new(big.Int).SetBytes(opts.D.Data(insecuresecretdataaccess.Token{})),
		Primes: []*big.Int{
			new(big.Int).SetBytes(opts.P.Data(insecuresecretdataaccess.Token{})),
			new(big.Int).SetBytes(opts.Q.Data(insecuresecretdataaccess.Token{})),
		},
	}
	if err := privateKey.Validate(); err != nil {
		return nil, fmt.Errorf("rsassapss.NewPrivateKey: %v", err)
	}
	privateKey.Precompute()
	pk := &PrivateKey{
		publicKey:  publicKey,
		privateKey: &privateKey,
	}
	if err := privateKeySelfCheck(pk); err != nil {
		return nil, fmt.Errorf("rsassapss.NewPrivateKey: %v", err)
	}
	return pk, nil
}

// P returns the prime P.
func (k *PrivateKey) P() secretdata.Bytes {
	return secretdata.NewBytesFromData(k.privateKey.Primes[0].Bytes(), insecuresecretdataaccess.Token{})
}

// Q returns the prime Q.
func (k *PrivateKey) Q() secretdata.Bytes {
	return secretdata.NewBytesFromData(k.privateKey.Primes[1].Bytes(), insecuresecretdataaccess.Token{})
}

// D returns the private exponent D.
func (k *PrivateKey) D() secretdata.Bytes {
	return secretdata.NewBytesFromData(k.privateKey.D.Bytes(), insecuresecretdataaccess.Token{})
}

// DP returns the private prime factor P-1.
func (k *PrivateKey) DP() secretdata.Bytes {
	return secretdata.NewBytesFromData(k.privateKey.Precomputed.Dp.Bytes(), insecuresecretdataaccess.Token{})
}

// DQ returns the private prime factor Q-1.
func (k *PrivateKey) DQ() secretdata.Bytes {
	return secretdata.NewBytesFromData(k.privateKey.Precomputed.Dq.Bytes(), insecuresecretdataaccess.Token{})
}

// QInv returns the inverse of Q.
func (k *PrivateKey) QInv() secretdata.Bytes {
	return secretdata.NewBytesFromData(k.privateKey.Precomputed.Qinv.Bytes(), insecuresecretdataaccess.Token{})
}

// PublicKey returns the corresponding public key.
func (k *PrivateKey) PublicKey() (key.Key, error) { return k.publicKey, nil }

// Parameters returns the parameters of this key.
func (k *PrivateKey) Parameters() key.Parameters { return k.publicKey.Parameters() }

// IDRequirement tells whether the key ID and whether it is required.
func (k *PrivateKey) IDRequirement() (uint32, bool) { return k.publicKey.IDRequirement() }

// OutputPrefix returns the output prefix of this key.
func (k *PrivateKey) OutputPrefix() []byte { return k.publicKey.OutputPrefix() }

// Equal tells whether this key object is equal to other.
func (k *PrivateKey) Equal(other key.Key) bool {
	that, ok := other.(*PrivateKey)
	return ok && k.publicKey.Equal(that.publicKey) && k.privateKey.Equal(that.privateKey)
}