1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
|
// Copyright 2019 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package primitiveset provides a container for a set of cryptographic
// primitives.
//
// It provides also additional properties for the primitives it holds. In
// particular, one of the primitives in the set can be distinguished as "the
// primary" one.
package primitiveset
import (
"fmt"
"github.com/tink-crypto/tink-go/v2/core/cryptofmt"
"github.com/tink-crypto/tink-go/v2/key"
)
// Entry represents a single entry in the keyset. In addition to the actual
// primitive, it holds the identifier and status of the primitive.
type Entry[T any] struct {
KeyID uint32
Primitive T
FullPrimitive T
Key key.Key
IsPrimary bool
}
// OutputPrefix returns the output prefix of the key.
func (e *Entry[T]) OutputPrefix() []byte {
return outputPrefix(e.Key)
}
// PrimitiveSet is used for supporting key rotation: primitives in a set
// correspond to keys in a keyset. Users will usually work with primitive
// instances, which essentially wrap primitive sets. For example an instance of
// an AEAD-primitive for a given keyset holds a set of AEAD-primitives
// corresponding to the keys in the keyset, and uses the set members to do the
// actual crypto operations: to encrypt data the primary AEAD-primitive from
// the set is used, and upon decryption the ciphertext's prefix determines the
// id of the primitive from the set.
type PrimitiveSet[T any] struct {
// Primary entry.
Primary *Entry[T]
// The primitives are stored in a map of (ciphertext prefix, list of
// primitives sharing the prefix). This allows quickly retrieving the
// primitives sharing some particular prefix.
Entries map[string][]*Entry[T]
// Stores entries in the original keyset key order.
EntriesInKeysetOrder []*Entry[T]
Annotations map[string]string
}
// New returns an empty instance of PrimitiveSet.
func New[T any]() *PrimitiveSet[T] {
return &PrimitiveSet[T]{
Primary: nil,
Entries: make(map[string][]*Entry[T]),
EntriesInKeysetOrder: make([]*Entry[T], 0),
Annotations: nil,
}
}
// RawEntries returns all primitives in the set that have RAW prefix.
func (ps *PrimitiveSet[T]) RawEntries() ([]*Entry[T], error) {
return ps.EntriesForPrefix(cryptofmt.RawPrefix)
}
// EntriesForPrefix returns all primitives in the set that have the given prefix.
func (ps *PrimitiveSet[T]) EntriesForPrefix(prefix string) ([]*Entry[T], error) {
result, found := ps.Entries[prefix]
if !found {
return []*Entry[T]{}, nil
}
return result, nil
}
type withOutputPrefix interface {
OutputPrefix() []byte
}
func outputPrefix(key key.Key) []byte {
if withOutputPrefix, ok := key.(withOutputPrefix); ok {
return withOutputPrefix.OutputPrefix()
}
return nil
}
// Add creates a new entry in the primitive set and returns the added entry.
func (ps *PrimitiveSet[T]) Add(e *Entry[T]) error {
// TODO: b/442750026 - Consider forcing T to be a pointer type and check for
// nil primitives.
if e.Key == nil {
return fmt.Errorf("key must be set")
}
prefix := string(e.OutputPrefix())
ps.Entries[prefix] = append(ps.Entries[prefix], e)
ps.EntriesInKeysetOrder = append(ps.EntriesInKeysetOrder, e)
if e.IsPrimary {
ps.Primary = e
}
return nil
}
|