1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
|
// Copyright 2025 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package jwtrsassapkcs1
import (
"bytes"
"crypto/rand"
"crypto/rsa"
"encoding/base64"
"encoding/binary"
"fmt"
"math/big"
"github.com/tink-crypto/tink-go/v2/insecuresecretdataaccess"
"github.com/tink-crypto/tink-go/v2/key"
"github.com/tink-crypto/tink-go/v2/secretdata"
)
// PublicKey represents a public key for JWT RSA SSA PKCS1 signing.
type PublicKey struct {
parameters *Parameters
modulus []byte // Big integer value in big-endian encoding.
idRequirement uint32
kid string
hasKID bool
}
var _ key.Key = (*PublicKey)(nil)
func computeKID(customKID *string, idRequirement uint32, parameters *Parameters) (string, bool, error) {
switch parameters.KIDStrategy() {
case Base64EncodedKeyIDAsKID:
if customKID != nil {
return "", false, fmt.Errorf("custom KID is not supported for KID strategy: %v", parameters.KIDStrategy())
}
// Serialize the ID requirement.
idRequirementBytes := make([]byte, 4)
binary.BigEndian.PutUint32(idRequirementBytes, idRequirement)
return base64.URLEncoding.WithPadding(base64.NoPadding).EncodeToString(idRequirementBytes), true, nil
case IgnoredKID:
if customKID != nil {
return "", false, fmt.Errorf("custom KID is not supported for KID strategy: %v", parameters.KIDStrategy())
}
return "", false, nil
case CustomKID:
if customKID == nil {
return "", false, fmt.Errorf("custom KID is required for KID strategy: %v", parameters.KIDStrategy())
}
return *customKID, true, nil
default:
return "", false, fmt.Errorf("invalid KID strategy: %v", parameters.KIDStrategy())
}
}
// PublicKeyOpts are [PublicKey] options.
type PublicKeyOpts struct {
Modulus []byte
IDRequirement uint32
CustomKID string
HasCustomKID bool
Parameters *Parameters
}
// NewPublicKey creates a new [PublicKey].
//
// The modulus is expected to be in big-endian encoding.
// The ID requirement must be 0 if the KID is not required.
func NewPublicKey(opts PublicKeyOpts) (*PublicKey, error) {
if opts.Parameters == nil {
return nil, fmt.Errorf("jwtrsassapkcs1.NewPublicKey: parameters can't be nil")
}
if !opts.Parameters.HasIDRequirement() && opts.IDRequirement != 0 {
return nil, fmt.Errorf("jwtrsassapkcs1.NewPublicKey: ID requirement must be 0 if ID is not required")
}
modulusBigInt := new(big.Int).SetBytes(opts.Modulus)
if modulusBigInt.BitLen() != opts.Parameters.ModulusSizeInBits() {
return nil, fmt.Errorf("jwtrsassapkcs1.NewPublicKey: invalid modulus bit-length: %v, want %v", modulusBigInt.BitLen(), opts.Parameters.ModulusSizeInBits())
}
var customKID *string = nil
if opts.HasCustomKID {
customKID = &opts.CustomKID
}
kid, hasKID, err := computeKID(customKID, opts.IDRequirement, opts.Parameters)
if err != nil {
return nil, fmt.Errorf("jwtrsassapkcs1.NewPublicKey: %v", err)
}
return &PublicKey{
parameters: opts.Parameters,
modulus: opts.Modulus,
idRequirement: opts.IDRequirement,
kid: kid,
hasKID: hasKID,
}, nil
}
// Parameters returns the parameters of the key.
func (k *PublicKey) Parameters() key.Parameters { return k.parameters }
// Modulus returns the public key modulus.
func (k *PublicKey) Modulus() []byte { return bytes.Clone(k.modulus) }
// KID returns the KID for this key.
//
// If no kid is set, it returns ("", false).
func (k *PublicKey) KID() (string, bool) { return k.kid, k.hasKID }
// IDRequirement returns the ID requirement for this key.
func (k *PublicKey) IDRequirement() (uint32, bool) {
return k.idRequirement, k.parameters.HasIDRequirement()
}
// Equal returns true if k and other are equal.
// Note that the comparison is not constant time.
func (k *PublicKey) Equal(other key.Key) bool {
that, ok := other.(*PublicKey)
return ok && k.parameters.Equal(that.parameters) &&
bytes.Equal(k.modulus, that.modulus) &&
k.idRequirement == that.idRequirement &&
k.kid == that.kid && k.hasKID == that.hasKID
}
// PrivateKey represents a private key for JWT RSA SSA PKCS1 signing.
type PrivateKey struct {
publicKey *PublicKey
privateKey *rsa.PrivateKey
}
// PrivateKeyOpts are [PrivateKey] options.
type PrivateKeyOpts struct {
PublicKey *PublicKey
D secretdata.Bytes
P secretdata.Bytes
Q secretdata.Bytes
// dp, dq and QInv must be computed by the Go library.
// See https://pkg.go.dev/crypto/rsa#PrivateKey.
}
// NewPrivateKey creates a new JWT RSA SSA PKCS1 private key.
func NewPrivateKey(opts PrivateKeyOpts) (*PrivateKey, error) {
if opts.PublicKey == nil {
return nil, fmt.Errorf("jwtrsassapkcs1.NewPrivateKey: public key cannot be nil")
}
privateKey := rsa.PrivateKey{
PublicKey: rsa.PublicKey{
N: new(big.Int).SetBytes(opts.PublicKey.Modulus()),
E: opts.PublicKey.Parameters().(*Parameters).PublicExponent(),
},
D: new(big.Int).SetBytes(opts.D.Data(insecuresecretdataaccess.Token{})),
Primes: []*big.Int{
new(big.Int).SetBytes(opts.P.Data(insecuresecretdataaccess.Token{})),
new(big.Int).SetBytes(opts.Q.Data(insecuresecretdataaccess.Token{})),
},
}
if err := privateKey.Validate(); err != nil {
return nil, fmt.Errorf("jwtrsassapkcs1.NewPrivateKey: %v", err)
}
// We don't use opts.DP, opts.DQ, opts.QI directly, because rsa.PrivateKey.Validate()
// does not check if they are correct. Instead, we call Precompute() to derive
// them from P, Q and D, and then use the derived values. This ensures that the
// precomputed values are correct.
privateKey.Precompute()
return &PrivateKey{
publicKey: opts.PublicKey,
privateKey: &privateKey,
}, nil
}
// Parameters returns the parameters of the key.
func (k *PrivateKey) Parameters() key.Parameters { return k.publicKey.Parameters() }
// PublicKey returns the public key.
func (k *PrivateKey) PublicKey() (key.Key, error) { return k.publicKey, nil }
// IDRequirement returns the ID requirement for this key.
func (k *PrivateKey) IDRequirement() (uint32, bool) { return k.publicKey.IDRequirement() }
// D returns the private exponent D.
func (k *PrivateKey) D() secretdata.Bytes {
return secretdata.NewBytesFromData(k.privateKey.D.Bytes(), insecuresecretdataaccess.Token{})
}
// P returns the prime factor P.
func (k *PrivateKey) P() secretdata.Bytes {
return secretdata.NewBytesFromData(k.privateKey.Primes[0].Bytes(), insecuresecretdataaccess.Token{})
}
// Q returns the prime factor Q.
func (k *PrivateKey) Q() secretdata.Bytes {
return secretdata.NewBytesFromData(k.privateKey.Primes[1].Bytes(), insecuresecretdataaccess.Token{})
}
// DP returns the private prime factor P-1.
func (k *PrivateKey) DP() secretdata.Bytes {
return secretdata.NewBytesFromData(k.privateKey.Precomputed.Dp.Bytes(), insecuresecretdataaccess.Token{})
}
// DQ returns the private prime factor Q-1.
func (k *PrivateKey) DQ() secretdata.Bytes {
return secretdata.NewBytesFromData(k.privateKey.Precomputed.Dq.Bytes(), insecuresecretdataaccess.Token{})
}
// QInv returns the inverse of Q.
func (k *PrivateKey) QInv() secretdata.Bytes {
return secretdata.NewBytesFromData(k.privateKey.Precomputed.Qinv.Bytes(), insecuresecretdataaccess.Token{})
}
// Equal returns true if k and other are equal.
// Note that the comparison is not constant time.
func (k *PrivateKey) Equal(other key.Key) bool {
that, ok := other.(*PrivateKey)
if !ok {
return false
}
return ok && k.publicKey.Equal(that.publicKey) && k.privateKey.Equal(that.privateKey)
}
func createPrivateKey(p key.Parameters, idRequirement uint32) (key.Key, error) {
jwtRSASSAPKCS1Params, ok := p.(*Parameters)
if !ok {
return nil, fmt.Errorf("jwtrsassapkcs1.createPrivateKey: invalid parameters type: want %T, got %T", (*Parameters)(nil), p)
}
if jwtRSASSAPKCS1Params.KIDStrategy() == CustomKID {
return nil, fmt.Errorf("jwtrsassapkcs1.createPrivateKey: key generation is not supported for strategy %v", jwtRSASSAPKCS1Params.KIDStrategy())
}
rsaKey, err := rsa.GenerateKey(rand.Reader, int(jwtRSASSAPKCS1Params.ModulusSizeInBits()))
if err != nil {
return nil, err
}
publicKey, err := NewPublicKey(PublicKeyOpts{
Modulus: rsaKey.PublicKey.N.Bytes(),
IDRequirement: idRequirement,
HasCustomKID: false,
Parameters: jwtRSASSAPKCS1Params,
})
if err != nil {
return nil, fmt.Errorf("jwtrsassapkcs1.createPrivateKey: %v", err)
}
privateKey, err := NewPrivateKey(PrivateKeyOpts{
PublicKey: publicKey,
D: secretdata.NewBytesFromData(rsaKey.D.Bytes(), insecuresecretdataaccess.Token{}),
P: secretdata.NewBytesFromData(rsaKey.Primes[0].Bytes(), insecuresecretdataaccess.Token{}),
Q: secretdata.NewBytesFromData(rsaKey.Primes[1].Bytes(), insecuresecretdataaccess.Token{}),
})
if err != nil {
return nil, fmt.Errorf("jwtrsassapkcs1.createPrivateKey: %v", err)
}
return privateKey, nil
}
|