1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926
|
// Copyright 2018 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package testutil provides common methods needed in test code.
package testutil
import (
"bytes"
"crypto/ecdsa"
"crypto/ed25519"
"crypto/elliptic"
"crypto/rand"
"encoding/gob"
"errors"
"fmt"
"log"
"math"
"strconv"
"strings"
"google.golang.org/protobuf/proto"
"github.com/tink-crypto/tink-go/v2/core/registry"
subtledaead "github.com/tink-crypto/tink-go/v2/daead/subtle"
"github.com/tink-crypto/tink-go/v2/keyset"
"github.com/tink-crypto/tink-go/v2/mac"
"github.com/tink-crypto/tink-go/v2/subtle/random"
"github.com/tink-crypto/tink-go/v2/subtle"
"github.com/tink-crypto/tink-go/v2/tink"
cmacpb "github.com/tink-crypto/tink-go/v2/proto/aes_cmac_go_proto"
aescmacprfpb "github.com/tink-crypto/tink-go/v2/proto/aes_cmac_prf_go_proto"
ctrhmacpb "github.com/tink-crypto/tink-go/v2/proto/aes_ctr_hmac_streaming_go_proto"
gcmpb "github.com/tink-crypto/tink-go/v2/proto/aes_gcm_go_proto"
gcmhkdfpb "github.com/tink-crypto/tink-go/v2/proto/aes_gcm_hkdf_streaming_go_proto"
gcmsivpb "github.com/tink-crypto/tink-go/v2/proto/aes_gcm_siv_go_proto"
aspb "github.com/tink-crypto/tink-go/v2/proto/aes_siv_go_proto"
commonpb "github.com/tink-crypto/tink-go/v2/proto/common_go_proto"
ecdsapb "github.com/tink-crypto/tink-go/v2/proto/ecdsa_go_proto"
eciespb "github.com/tink-crypto/tink-go/v2/proto/ecies_aead_hkdf_go_proto"
ed25519pb "github.com/tink-crypto/tink-go/v2/proto/ed25519_go_proto"
hkdfprfpb "github.com/tink-crypto/tink-go/v2/proto/hkdf_prf_go_proto"
hmacpb "github.com/tink-crypto/tink-go/v2/proto/hmac_go_proto"
hmacprfpb "github.com/tink-crypto/tink-go/v2/proto/hmac_prf_go_proto"
tinkpb "github.com/tink-crypto/tink-go/v2/proto/tink_go_proto"
)
// DummyAEADKeyManager is a dummy implementation of the KeyManager interface.
// It returns DummyAEAD when GetPrimitive() functions are called.
type DummyAEADKeyManager struct{}
var _ registry.KeyManager = (*DummyAEADKeyManager)(nil)
// Primitive constructs a primitive instance for the key given in
// serializedKey, which must be a serialized key protocol buffer handled by this manager.
func (km *DummyAEADKeyManager) Primitive(serializedKey []byte) (any, error) {
return new(DummyAEAD), nil
}
// NewKey generates a new key according to specification in serializedKeyFormat.
func (km *DummyAEADKeyManager) NewKey(serializedKeyFormat []byte) (proto.Message, error) {
return nil, fmt.Errorf("not implemented")
}
// NewKeyData generates a new KeyData according to specification in serializedkeyFormat.
func (km *DummyAEADKeyManager) NewKeyData(serializedKeyFormat []byte) (*tinkpb.KeyData, error) {
return nil, fmt.Errorf("not implemented")
}
// DoesSupport returns true iff this KeyManager supports key type identified by typeURL.
func (km *DummyAEADKeyManager) DoesSupport(typeURL string) bool {
return typeURL == AESGCMTypeURL
}
// TypeURL returns the type URL.
func (km *DummyAEADKeyManager) TypeURL() string {
return AESGCMTypeURL
}
// DummyAEAD is a dummy implementation of AEAD interface. It "encrypts" data
// with a simple serialization capturing the dummy name, plaintext, and
// associated data, and "decrypts" it by reversing this and checking that the
// name and associated data match.
type DummyAEAD struct {
Name string
}
type dummyAEADData struct {
Name string
Plaintext []byte
AssociatedData []byte
}
// Encrypt encrypts the plaintext.
func (a *DummyAEAD) Encrypt(plaintext []byte, associatedData []byte) ([]byte, error) {
buf := new(bytes.Buffer)
encoder := gob.NewEncoder(buf)
err := encoder.Encode(dummyAEADData{
Name: a.Name,
Plaintext: plaintext,
AssociatedData: associatedData,
})
if err != nil {
return nil, fmt.Errorf("dummy aead encrypt: %v", err)
}
return buf.Bytes(), nil
}
// Decrypt decrypts the ciphertext.
func (a *DummyAEAD) Decrypt(ciphertext []byte, associatedData []byte) ([]byte, error) {
data := dummyAEADData{}
decoder := gob.NewDecoder(bytes.NewBuffer(ciphertext))
if err := decoder.Decode(&data); err != nil {
return nil, fmt.Errorf("dummy aead decrypt: invalid data: %v", err)
}
if data.Name != a.Name || !bytes.Equal(data.AssociatedData, associatedData) {
return nil, errors.New("dummy aead encrypt: name/associated data mismatch")
}
return data.Plaintext, nil
}
// AlwaysFailingAead fails encryption and decryption operations.
type AlwaysFailingAead struct {
Error error
}
var _ (tink.AEAD) = (*AlwaysFailingAead)(nil)
// NewAlwaysFailingAead creates a new always failing AEAD.
func NewAlwaysFailingAead(err error) tink.AEAD {
return &AlwaysFailingAead{Error: err}
}
// Encrypt returns an error on encryption.
func (a *AlwaysFailingAead) Encrypt(plaintext []byte, associatedData []byte) ([]byte, error) {
return nil, fmt.Errorf("AlwaysFailingAead will always fail on encryption: %v", a.Error)
}
// Decrypt returns an error on decryption.
func (a *AlwaysFailingAead) Decrypt(ciphertext []byte, associatedData []byte) ([]byte, error) {
return nil, fmt.Errorf("AlwaysFailingAead will always fail on decryption: %v", a.Error)
}
// AlwaysFailingDeterministicAead fails encryption and decryption operations.
type AlwaysFailingDeterministicAead struct {
Error error
}
var _ (tink.DeterministicAEAD) = (*AlwaysFailingDeterministicAead)(nil)
// NewAlwaysFailingDeterministicAead creates a new always failing AEAD.
func NewAlwaysFailingDeterministicAead(err error) tink.DeterministicAEAD {
return &AlwaysFailingDeterministicAead{Error: err}
}
// EncryptDeterministically returns an error on encryption.
func (a *AlwaysFailingDeterministicAead) EncryptDeterministically(plaintext []byte, associatedData []byte) ([]byte, error) {
return nil, fmt.Errorf("AlwaysFailingDeterministicAead will always fail on encryption: %v", a.Error)
}
// DecryptDeterministically returns an error on decryption.
func (a *AlwaysFailingDeterministicAead) DecryptDeterministically(ciphertext []byte, associatedData []byte) ([]byte, error) {
return nil, fmt.Errorf("AlwaysFailingDeterministicAead will always fail on decryption: %v", a.Error)
}
// TestKeyManager is key manager which can be setup to return an arbitrary primitive for a type URL
// useful for testing.
type TestKeyManager struct {
primitive any
typeURL string
}
var _ registry.KeyManager = (*TestKeyManager)(nil)
// NewTestKeyManager creates a new key manager that returns a specific primitive for a typeURL.
func NewTestKeyManager(primitive any, typeURL string) registry.KeyManager {
return &TestKeyManager{
primitive: primitive,
typeURL: typeURL,
}
}
// Primitive constructs a primitive instance for the key given input key.
func (km *TestKeyManager) Primitive(serializedKey []byte) (any, error) {
return km.primitive, nil
}
// NewKey generates a new key according to specification in serializedKeyFormat.
func (km *TestKeyManager) NewKey(serializedKeyFormat []byte) (proto.Message, error) {
return nil, fmt.Errorf("TestKeyManager: not implemented")
}
// NewKeyData generates a new KeyData according to specification in serializedkeyFormat.
func (km *TestKeyManager) NewKeyData(serializedKeyFormat []byte) (*tinkpb.KeyData, error) {
return nil, fmt.Errorf("TestKeyManager: not implemented")
}
// DoesSupport returns true if this KeyManager supports key type identified by typeURL.
func (km *TestKeyManager) DoesSupport(typeURL string) bool {
return typeURL == km.typeURL
}
// TypeURL returns the type URL.
func (km *TestKeyManager) TypeURL() string {
return km.typeURL
}
// DummySigner is a dummy implementation of the Signer interface.
type DummySigner struct {
aead DummyAEAD
}
// NewDummySigner creates a new dummy signer with the specified name. The name
// is used to pair with the DummyVerifier.
func NewDummySigner(name string) *DummySigner {
return &DummySigner{DummyAEAD{Name: "dummy public key:" + name}}
}
// Sign signs data.
func (s *DummySigner) Sign(data []byte) ([]byte, error) {
return s.aead.Encrypt(nil, data)
}
// DummyVerifier is a dummy implementation of the Signer interface.
type DummyVerifier struct {
aead DummyAEAD
}
// Verify verifies data.
func (v *DummyVerifier) Verify(sig, data []byte) error {
_, err := v.aead.Decrypt(sig, data)
return err
}
// NewDummyVerifier creates a new dummy verifier with the specified name. The
// name is used to pair with the DummySigner.
func NewDummyVerifier(name string) *DummyVerifier {
return &DummyVerifier{DummyAEAD{Name: "dummy public key:" + name}}
}
// DummyMAC is a dummy implementation of Mac interface.
type DummyMAC struct {
Name string
}
// ComputeMAC computes an insecure message authentication code (MAC) for data.
func (h *DummyMAC) ComputeMAC(data []byte) ([]byte, error) {
return makeDummyMAC(data, h.Name), nil
}
func makeDummyMAC(data []byte, name string) []byte {
m := make([]byte, 0, len(data)+len(name))
m = append(m, data...)
return append(m, name...)
}
// VerifyMAC verifies whether mac is a correct, although insecure, message
// authentication code (MAC) for data.
func (h *DummyMAC) VerifyMAC(mac []byte, data []byte) error {
want := makeDummyMAC(data, h.Name)
if bytes.Equal(mac, want) {
return nil
}
// This is intended for test use. If it fails, describe what MAC would be
// required to succeed.
return fmt.Errorf("VerifyMAC: mac = %x, requires %x", mac, want)
}
// DummyKMSClient is a dummy implementation of a KMS Client.
type DummyKMSClient struct{}
var _ registry.KMSClient = (*DummyKMSClient)(nil)
// Supported true if this client does support keyURI
func (d *DummyKMSClient) Supported(keyURI string) bool {
return keyURI == "dummy"
}
// GetAEAD gets an Aead backend by keyURI.
func (d *DummyKMSClient) GetAEAD(keyURI string) (tink.AEAD, error) {
return &DummyAEAD{}, nil
}
// NewTestAESGCMKeyset creates a new Keyset containing an AESGCMKey.
func NewTestAESGCMKeyset(primaryOutputPrefixType tinkpb.OutputPrefixType) *tinkpb.Keyset {
keyData := NewAESGCMKeyData(16)
return NewTestKeyset(keyData, primaryOutputPrefixType)
}
// NewTestAESGCMSIVKeyset creates a new Keyset containing an AESGCMSIVKey.
func NewTestAESGCMSIVKeyset(primaryOutputPrefixType tinkpb.OutputPrefixType) *tinkpb.Keyset {
keyData := NewAESGCMSIVKeyData(16)
return NewTestKeyset(keyData, primaryOutputPrefixType)
}
// NewTestAESSIVKeyset creates a new Keyset containing an AesSivKey.
func NewTestAESSIVKeyset(primaryOutputPrefixType tinkpb.OutputPrefixType) *tinkpb.Keyset {
keyValue := random.GetRandomBytes(subtledaead.AESSIVKeySize)
key := &aspb.AesSivKey{
Version: AESSIVKeyVersion,
KeyValue: keyValue,
}
serializedKey, err := proto.Marshal(key)
if err != nil {
log.Fatalf("failed serializing proto: %v", err)
}
keyData := NewKeyData(AESSIVTypeURL, serializedKey, tinkpb.KeyData_SYMMETRIC)
return NewTestKeyset(keyData, primaryOutputPrefixType)
}
// NewTestHMACKeyset creates a new Keyset containing a HMACKey.
func NewTestHMACKeyset(tagSize uint32, primaryOutputPrefixType tinkpb.OutputPrefixType) *tinkpb.Keyset {
keyData := NewHMACKeyData(commonpb.HashType_SHA256, tagSize)
return NewTestKeyset(keyData, primaryOutputPrefixType)
}
// NewTestAESGCMHKDFKeyset creates a new Keyset containing an AESGCMHKDFKey.
func NewTestAESGCMHKDFKeyset() *tinkpb.Keyset {
const (
keySize = 16
derivedKeySize = 16
ciphertextSegmentSize = 4096
)
keyData := NewAESGCMHKDFKeyData(keySize, derivedKeySize, commonpb.HashType_SHA256, ciphertextSegmentSize)
return NewTestKeyset(keyData, tinkpb.OutputPrefixType_RAW)
}
// NewTestKeyset creates a new test Keyset.
func NewTestKeyset(keyData *tinkpb.KeyData, primaryOutputPrefixType tinkpb.OutputPrefixType) *tinkpb.Keyset {
primaryKey := NewKey(keyData, tinkpb.KeyStatusType_ENABLED, 42, primaryOutputPrefixType)
rawKey := NewKey(keyData, tinkpb.KeyStatusType_ENABLED, 43, tinkpb.OutputPrefixType_RAW)
legacyKey := NewKey(keyData, tinkpb.KeyStatusType_ENABLED, 44, tinkpb.OutputPrefixType_LEGACY)
tinkKey := NewKey(keyData, tinkpb.KeyStatusType_ENABLED, 45, tinkpb.OutputPrefixType_TINK)
crunchyKey := NewKey(keyData, tinkpb.KeyStatusType_ENABLED, 46, tinkpb.OutputPrefixType_CRUNCHY)
keys := []*tinkpb.Keyset_Key{primaryKey, rawKey, legacyKey, tinkKey, crunchyKey}
return NewKeyset(primaryKey.KeyId, keys)
}
// NewDummyKey returns a dummy key that doesn't contain actual key material.
func NewDummyKey(keyID int, status tinkpb.KeyStatusType, outputPrefixType tinkpb.OutputPrefixType) *tinkpb.Keyset_Key {
return &tinkpb.Keyset_Key{
KeyData: new(tinkpb.KeyData),
Status: status,
KeyId: uint32(keyID),
OutputPrefixType: outputPrefixType,
}
}
// NewECDSAParams creates a ECDSAParams with the specified parameters.
func NewECDSAParams(hashType commonpb.HashType, curve commonpb.EllipticCurveType, encoding ecdsapb.EcdsaSignatureEncoding) *ecdsapb.EcdsaParams {
return &ecdsapb.EcdsaParams{
HashType: hashType,
Curve: curve,
Encoding: encoding,
}
}
// NewECDSAKeyFormat creates a ECDSAKeyFormat with the specified parameters.
func NewECDSAKeyFormat(params *ecdsapb.EcdsaParams) *ecdsapb.EcdsaKeyFormat {
return &ecdsapb.EcdsaKeyFormat{Params: params}
}
// NewECDSAPrivateKey creates a ECDSAPrivateKey with the specified paramaters.
func NewECDSAPrivateKey(version uint32, publicKey *ecdsapb.EcdsaPublicKey, keyValue []byte) *ecdsapb.EcdsaPrivateKey {
return &ecdsapb.EcdsaPrivateKey{
Version: version,
PublicKey: publicKey,
KeyValue: keyValue,
}
}
// NewECDSAPublicKey creates a ECDSAPublicKey with the specified paramaters.
func NewECDSAPublicKey(version uint32, params *ecdsapb.EcdsaParams, x, y []byte) *ecdsapb.EcdsaPublicKey {
return &ecdsapb.EcdsaPublicKey{
Version: version,
Params: params,
X: x,
Y: y,
}
}
// NewRandomECDSAPrivateKey creates an ECDSAPrivateKey with randomly generated key material.
func NewRandomECDSAPrivateKey(hashType commonpb.HashType, curve commonpb.EllipticCurveType) *ecdsapb.EcdsaPrivateKey {
curveName := commonpb.EllipticCurveType_name[int32(curve)]
priv, err := ecdsa.GenerateKey(subtle.GetCurve(curveName), rand.Reader)
if err != nil {
panic(fmt.Sprintf("ecdsa.GenerateKey() failed: %v", err))
}
params := NewECDSAParams(hashType, curve, ecdsapb.EcdsaSignatureEncoding_DER)
publicKey := NewECDSAPublicKey(ECDSAVerifierKeyVersion, params, priv.X.Bytes(), priv.Y.Bytes())
return NewECDSAPrivateKey(ECDSASignerKeyVersion, publicKey, priv.D.Bytes())
}
// NewRandomECDSAPublicKey creates an ECDSAPublicKey with randomly generated key material.
func NewRandomECDSAPublicKey(hashType commonpb.HashType, curve commonpb.EllipticCurveType) *ecdsapb.EcdsaPublicKey {
return NewRandomECDSAPrivateKey(hashType, curve).PublicKey
}
// GetECDSAParamNames returns the string representations of each parameter in
// the given ECDSAParams.
func GetECDSAParamNames(params *ecdsapb.EcdsaParams) (string, string, string) {
hashName := commonpb.HashType_name[int32(params.HashType)]
curveName := commonpb.EllipticCurveType_name[int32(params.Curve)]
encodingName := ecdsapb.EcdsaSignatureEncoding_name[int32(params.Encoding)]
return hashName, curveName, encodingName
}
// NewED25519PrivateKey creates an ED25519PrivateKey with randomly generated key material.
func NewED25519PrivateKey() *ed25519pb.Ed25519PrivateKey {
public, private, err := ed25519.GenerateKey(rand.Reader)
if err != nil {
panic(fmt.Sprintf("ed25519.GenerateKey() failed: %v", err))
}
publicProto := &ed25519pb.Ed25519PublicKey{
Version: ED25519SignerKeyVersion,
KeyValue: public,
}
return &ed25519pb.Ed25519PrivateKey{
Version: ED25519SignerKeyVersion,
PublicKey: publicProto,
KeyValue: private.Seed(),
}
}
// NewED25519PublicKey creates an ED25519PublicKey with randomly generated key material.
func NewED25519PublicKey() *ed25519pb.Ed25519PublicKey {
return NewED25519PrivateKey().PublicKey
}
// NewAESGCMKey creates a randomly generated AESGCMKey.
func NewAESGCMKey(keyVersion uint32, keySize uint32) *gcmpb.AesGcmKey {
keyValue := random.GetRandomBytes(keySize)
return &gcmpb.AesGcmKey{
Version: keyVersion,
KeyValue: keyValue,
}
}
// NewAESGCMKeyData creates a KeyData containing a randomly generated AESGCMKey.
func NewAESGCMKeyData(keySize uint32) *tinkpb.KeyData {
serializedKey, err := proto.Marshal(NewAESGCMKey(AESGCMKeyVersion, keySize))
if err != nil {
log.Fatalf("failed serializing proto: %v", err)
}
return NewKeyData(AESGCMTypeURL, serializedKey, tinkpb.KeyData_SYMMETRIC)
}
// NewAESGCMKeyFormat returns a new AESGCMKeyFormat.
func NewAESGCMKeyFormat(keySize uint32) *gcmpb.AesGcmKeyFormat {
return &gcmpb.AesGcmKeyFormat{
KeySize: keySize,
}
}
// NewAESGCMSIVKey creates a randomly generated AESGCMSIVKey.
func NewAESGCMSIVKey(keyVersion, keySize uint32) *gcmsivpb.AesGcmSivKey {
keyValue := random.GetRandomBytes(keySize)
return &gcmsivpb.AesGcmSivKey{
Version: keyVersion,
KeyValue: keyValue,
}
}
// NewAESGCMSIVKeyData creates a KeyData containing a randomly generated AESGCMSIVKey.
func NewAESGCMSIVKeyData(keySize uint32) *tinkpb.KeyData {
serializedKey, err := proto.Marshal(NewAESGCMSIVKey(AESGCMKeyVersion, keySize))
if err != nil {
log.Fatalf("NewAESGCMSIVKeyData(keySize=%d): Failed serializing proto; err=%v", keySize, err)
}
return NewKeyData(AESGCMTypeURL, serializedKey, tinkpb.KeyData_SYMMETRIC)
}
// NewAESGCMSIVKeyFormat returns a new AESGCMKeyFormat.
func NewAESGCMSIVKeyFormat(keySize uint32) *gcmsivpb.AesGcmSivKeyFormat {
return &gcmsivpb.AesGcmSivKeyFormat{
KeySize: keySize,
}
}
// NewAESGCMHKDFKey creates a randomly generated AESGCMHKDFKey.
func NewAESGCMHKDFKey(keyVersion, keySize, derivedKeySize uint32, hkdfHashType commonpb.HashType, ciphertextSegmentSize uint32) *gcmhkdfpb.AesGcmHkdfStreamingKey {
keyValue := random.GetRandomBytes(keySize)
return &gcmhkdfpb.AesGcmHkdfStreamingKey{
Version: keyVersion,
KeyValue: keyValue,
Params: &gcmhkdfpb.AesGcmHkdfStreamingParams{
CiphertextSegmentSize: ciphertextSegmentSize,
DerivedKeySize: derivedKeySize,
HkdfHashType: hkdfHashType,
},
}
}
// NewAESGCMHKDFKeyData creates a KeyData containing a randomly generated AESGCMHKDFKey.
func NewAESGCMHKDFKeyData(keySize, derivedKeySize uint32, hkdfHashType commonpb.HashType, ciphertextSegmentSize uint32) *tinkpb.KeyData {
serializedKey, err := proto.Marshal(NewAESGCMHKDFKey(AESGCMHKDFKeyVersion, keySize, derivedKeySize, hkdfHashType, ciphertextSegmentSize))
if err != nil {
log.Fatalf("failed serializing proto: %v", err)
}
return NewKeyData(AESGCMHKDFTypeURL, serializedKey, tinkpb.KeyData_SYMMETRIC)
}
// NewAESGCMHKDFKeyFormat returns a new AESGCMHKDFKeyFormat.
func NewAESGCMHKDFKeyFormat(keySize, derivedKeySize uint32, hkdfHashType commonpb.HashType, ciphertextSegmentSize uint32) *gcmhkdfpb.AesGcmHkdfStreamingKeyFormat {
return &gcmhkdfpb.AesGcmHkdfStreamingKeyFormat{
KeySize: keySize,
Params: &gcmhkdfpb.AesGcmHkdfStreamingParams{
CiphertextSegmentSize: ciphertextSegmentSize,
DerivedKeySize: derivedKeySize,
HkdfHashType: hkdfHashType,
},
}
}
// NewAESCTRHMACKey creates a randomly generated AESCTRHMACKey.
func NewAESCTRHMACKey(keyVersion, keySize uint32, hkdfHashType commonpb.HashType, derivedKeySize uint32, hashType commonpb.HashType, tagSize, ciphertextSegmentSize uint32) *ctrhmacpb.AesCtrHmacStreamingKey {
keyValue := random.GetRandomBytes(keySize)
return &ctrhmacpb.AesCtrHmacStreamingKey{
Version: keyVersion,
KeyValue: keyValue,
Params: &ctrhmacpb.AesCtrHmacStreamingParams{
CiphertextSegmentSize: ciphertextSegmentSize,
DerivedKeySize: derivedKeySize,
HkdfHashType: hkdfHashType,
HmacParams: &hmacpb.HmacParams{
Hash: hashType,
TagSize: tagSize,
},
},
}
}
// NewAESCTRHMACKeyFormat returns a new AESCTRHMACKeyFormat.
func NewAESCTRHMACKeyFormat(keySize uint32, hkdfHashType commonpb.HashType, derivedKeySize uint32, hashType commonpb.HashType, tagSize, ciphertextSegmentSize uint32) *ctrhmacpb.AesCtrHmacStreamingKeyFormat {
return &ctrhmacpb.AesCtrHmacStreamingKeyFormat{
KeySize: keySize,
Params: &ctrhmacpb.AesCtrHmacStreamingParams{
CiphertextSegmentSize: ciphertextSegmentSize,
DerivedKeySize: derivedKeySize,
HkdfHashType: hkdfHashType,
HmacParams: &hmacpb.HmacParams{
Hash: hashType,
TagSize: tagSize,
},
},
}
}
// NewHMACParams returns a new HMACParams.
func NewHMACParams(hashType commonpb.HashType, tagSize uint32) *hmacpb.HmacParams {
return &hmacpb.HmacParams{
Hash: hashType,
TagSize: tagSize,
}
}
// NewHMACKey creates a new HMACKey with the specified parameters.
func NewHMACKey(hashType commonpb.HashType, tagSize uint32) *hmacpb.HmacKey {
params := NewHMACParams(hashType, tagSize)
keyValue := random.GetRandomBytes(20)
return &hmacpb.HmacKey{
Version: HMACKeyVersion,
Params: params,
KeyValue: keyValue,
}
}
// NewHMACKeyFormat creates a new HMACKeyFormat with the specified parameters.
func NewHMACKeyFormat(hashType commonpb.HashType, tagSize uint32) *hmacpb.HmacKeyFormat {
params := NewHMACParams(hashType, tagSize)
keySize := uint32(20)
return &hmacpb.HmacKeyFormat{
Params: params,
KeySize: keySize,
}
}
// NewAESCMACParams returns a new AESCMACParams.
func NewAESCMACParams(tagSize uint32) *cmacpb.AesCmacParams {
return &cmacpb.AesCmacParams{
TagSize: tagSize,
}
}
// NewAESCMACKey creates a new AESCMACKey with the specified parameters.
func NewAESCMACKey(tagSize uint32) *cmacpb.AesCmacKey {
params := NewAESCMACParams(tagSize)
keyValue := random.GetRandomBytes(32)
return &cmacpb.AesCmacKey{
Version: AESCMACKeyVersion,
Params: params,
KeyValue: keyValue,
}
}
// NewAESCMACKeyFormat creates a new AESCMACKeyFormat with the specified parameters.
func NewAESCMACKeyFormat(tagSize uint32) *cmacpb.AesCmacKeyFormat {
params := NewAESCMACParams(tagSize)
keySize := uint32(32)
return &cmacpb.AesCmacKeyFormat{
Params: params,
KeySize: keySize,
}
}
// NewHMACKeysetManager returns a new KeysetManager that contains a HMACKey.
func NewHMACKeysetManager() *keyset.Manager {
ksm := keyset.NewManager()
kt := mac.HMACSHA256Tag128KeyTemplate()
keyID, err := ksm.Add(kt)
if err != nil {
panic(fmt.Sprintf("cannot add key: %v", err))
}
err = ksm.SetPrimary(keyID)
if err != nil {
panic(fmt.Sprintf("cannot set primary key: %v", err))
}
return ksm
}
// NewHMACKeyData returns a new KeyData that contains a HMACKey.
func NewHMACKeyData(hashType commonpb.HashType, tagSize uint32) *tinkpb.KeyData {
key := NewHMACKey(hashType, tagSize)
serializedKey, err := proto.Marshal(key)
if err != nil {
log.Fatalf("failed serializing proto: %v", err)
}
return &tinkpb.KeyData{
TypeUrl: HMACTypeURL,
Value: serializedKey,
KeyMaterialType: tinkpb.KeyData_SYMMETRIC,
}
}
// NewHMACPRFParams returns a new HMACPRFParams.
func NewHMACPRFParams(hashType commonpb.HashType) *hmacprfpb.HmacPrfParams {
return &hmacprfpb.HmacPrfParams{
Hash: hashType,
}
}
// NewHMACPRFKey creates a new HMACPRFKey with the specified parameters.
func NewHMACPRFKey(hashType commonpb.HashType) *hmacprfpb.HmacPrfKey {
params := NewHMACPRFParams(hashType)
keyValue := random.GetRandomBytes(32)
return &hmacprfpb.HmacPrfKey{
Version: HMACPRFKeyVersion,
Params: params,
KeyValue: keyValue,
}
}
// NewHMACPRFKeyFormat creates a new HMACPRFKeyFormat with the specified parameters.
func NewHMACPRFKeyFormat(hashType commonpb.HashType) *hmacprfpb.HmacPrfKeyFormat {
params := NewHMACPRFParams(hashType)
keySize := uint32(32)
return &hmacprfpb.HmacPrfKeyFormat{
Params: params,
KeySize: keySize,
}
}
// NewHKDFPRFParams returns a new HKDFPRFParams.
func NewHKDFPRFParams(hashType commonpb.HashType, salt []byte) *hkdfprfpb.HkdfPrfParams {
return &hkdfprfpb.HkdfPrfParams{
Hash: hashType,
Salt: salt,
}
}
// NewHKDFPRFKey creates a new HKDFPRFKey with the specified parameters.
func NewHKDFPRFKey(hashType commonpb.HashType, salt []byte) *hkdfprfpb.HkdfPrfKey {
params := NewHKDFPRFParams(hashType, salt)
keyValue := random.GetRandomBytes(32)
return &hkdfprfpb.HkdfPrfKey{
Version: HKDFPRFKeyVersion,
Params: params,
KeyValue: keyValue,
}
}
// NewHKDFPRFKeyFormat creates a new HKDFPRFKeyFormat with the specified parameters.
func NewHKDFPRFKeyFormat(hashType commonpb.HashType, salt []byte) *hkdfprfpb.HkdfPrfKeyFormat {
params := NewHKDFPRFParams(hashType, salt)
keySize := uint32(32)
return &hkdfprfpb.HkdfPrfKeyFormat{
Params: params,
KeySize: keySize,
}
}
// NewAESCMACPRFKey creates a new AESCMACPRFKey with the specified parameters.
func NewAESCMACPRFKey() *aescmacprfpb.AesCmacPrfKey {
keyValue := random.GetRandomBytes(32)
return &aescmacprfpb.AesCmacPrfKey{
Version: AESCMACPRFKeyVersion,
KeyValue: keyValue,
}
}
// NewAESCMACPRFKeyFormat creates a new AESCMACPRFKeyFormat with the specified parameters.
func NewAESCMACPRFKeyFormat() *aescmacprfpb.AesCmacPrfKeyFormat {
keySize := uint32(32)
return &aescmacprfpb.AesCmacPrfKeyFormat{
KeySize: keySize,
}
}
// NewKeyData creates a new KeyData with the specified parameters.
func NewKeyData(typeURL string, value []byte, materialType tinkpb.KeyData_KeyMaterialType) *tinkpb.KeyData {
return &tinkpb.KeyData{
TypeUrl: typeURL,
Value: value,
KeyMaterialType: materialType,
}
}
// NewKey creates a new Key with the specified parameters.
func NewKey(keyData *tinkpb.KeyData, status tinkpb.KeyStatusType, keyID uint32, prefixType tinkpb.OutputPrefixType) *tinkpb.Keyset_Key {
return &tinkpb.Keyset_Key{
KeyData: keyData,
Status: status,
KeyId: keyID,
OutputPrefixType: prefixType,
}
}
// NewKeyset creates a new Keyset with the specified parameters.
func NewKeyset(primaryKeyID uint32, keys []*tinkpb.Keyset_Key) *tinkpb.Keyset {
return &tinkpb.Keyset{
PrimaryKeyId: primaryKeyID,
Key: keys,
}
}
// GenerateMutations generates different byte mutations for a given byte array.
func GenerateMutations(src []byte) (all [][]byte) {
// Flip bits
for i := 0; i < len(src); i++ {
for j := 0; j < 8; j++ {
n := make([]byte, len(src))
copy(n, src)
n[i] = n[i] ^ (1 << uint8(j))
all = append(all, n)
}
}
// Truncate bytes
for i := 1; i < len(src); i++ {
n := make([]byte, len(src[i:]))
copy(n, src[i:])
all = append(all, n)
}
// Append extra byte
m := make([]byte, len(src)+1)
copy(m, src)
all = append(all, m)
return
}
// ZTestUniformString uses a z test on the given byte string, expecting all
// bits to be uniformly set with probability 1/2. Returns non ok status if the
// z test fails by more than 10 standard deviations.
//
// With less statistics jargon: This counts the number of bits set and expects
// the number to be roughly half of the length of the string. The law of large
// numbers suggests that we can assume that the longer the string is, the more
// accurate that estimate becomes for a random string. This test is useful to
// detect things like strings that are entirely zero.
//
// Note: By itself, this is a very weak test for randomness.
func ZTestUniformString(bytes []byte) error {
expected := float64(len(bytes)) * 8.0 / 2.0
stddev := math.Sqrt(float64(len(bytes)) * 8.0 / 4.0)
numSetBits := int64(0)
for _, b := range bytes {
// Counting the number of bits set in byte:
for b != 0 {
numSetBits++
b = b & (b - 1)
}
}
// Check that the number of bits is within 10 stddevs.
if math.Abs(float64(numSetBits)-expected) < 10.0*stddev {
return nil
}
return fmt.Errorf("Z test for uniformly distributed variable out of bounds; "+
"Actual number of set bits was %d expected was %0.00f, 10 * standard deviation is 10 * %0.00f = %0.00f",
numSetBits, expected, stddev, 10.0*stddev)
}
func rotate(bytes []byte) []byte {
result := make([]byte, len(bytes))
for i := 0; i < len(bytes); i++ {
prev := i
if i == 0 {
prev = len(bytes)
}
result[i] = (bytes[i] >> 1) |
(bytes[prev-1] << 7)
}
return result
}
// ZTestCrosscorrelationUniformStrings tests that the crosscorrelation of two
// strings of equal length points to independent and uniformly distributed
// strings. Returns non ok status if the z test fails by more than 10 standard
// deviations.
//
// With less statistics jargon: This xors two strings and then performs the
// ZTestUniformString on the result. If the two strings are independent and
// uniformly distributed, the xor'ed string is as well. A cross correlation test
// will find whether two strings overlap more or less than it would be expected.
//
// Note: Having a correlation of zero is only a necessary but not sufficient
// condition for independence.
func ZTestCrosscorrelationUniformStrings(bytes1, bytes2 []byte) error {
if len(bytes1) != len(bytes2) {
return fmt.Errorf(
"Strings are not of equal length")
}
crossed := make([]byte, len(bytes1))
for i := 0; i < len(bytes1); i++ {
crossed[i] = bytes1[i] ^ bytes2[i]
}
return ZTestUniformString(crossed)
}
// ZTestAutocorrelationUniformString tests that the autocorrelation of a string
// points to the bits being independent and uniformly distributed.
// Rotates the string in a cyclic fashion. Returns non ok status if the z test
// fails by more than 10 standard deviations.
//
// With less statistics jargon: This rotates the string bit by bit and performs
// ZTestCrosscorrelationUniformStrings on each of the rotated strings and the
// original. This will find self similarity of the input string, especially
// periodic self similarity. For example, it is a decent test to find English
// text (needs about 180 characters with the current settings).
//
// Note: Having a correlation of zero is only a necessary but not sufficient
// condition for independence.
func ZTestAutocorrelationUniformString(bytes []byte) error {
rotated := make([]byte, len(bytes))
copy(rotated, bytes)
violations := []string{}
for i := 1; i < len(bytes)*8; i++ {
rotated = rotate(rotated)
err := ZTestCrosscorrelationUniformStrings(bytes, rotated)
if err != nil {
violations = append(violations, strconv.Itoa(i))
}
}
if len(violations) == 0 {
return nil
}
return fmt.Errorf("Autocorrelation exceeded 10 standard deviation at %d indices: %s", len(violations), strings.Join(violations, ", "))
}
// eciesAEADHKDFPublicKey returns a EciesAeadHkdfPublicKey with specified parameters.
func eciesAEADHKDFPublicKey(c commonpb.EllipticCurveType, ht commonpb.HashType, ptfmt commonpb.EcPointFormat, dekT *tinkpb.KeyTemplate, x, y, salt []byte) *eciespb.EciesAeadHkdfPublicKey {
return &eciespb.EciesAeadHkdfPublicKey{
Version: 0,
Params: &eciespb.EciesAeadHkdfParams{
KemParams: &eciespb.EciesHkdfKemParams{
CurveType: c,
HkdfHashType: ht,
HkdfSalt: salt,
},
DemParams: &eciespb.EciesAeadDemParams{
AeadDem: dekT,
},
EcPointFormat: ptfmt,
},
X: x,
Y: y,
}
}
// eciesAEADHKDFPrivateKey returns a EciesAeadHkdfPrivateKey with specified parameters
func eciesAEADHKDFPrivateKey(p *eciespb.EciesAeadHkdfPublicKey, d []byte) *eciespb.EciesAeadHkdfPrivateKey {
return &eciespb.EciesAeadHkdfPrivateKey{
Version: 0,
PublicKey: p,
KeyValue: d,
}
}
// curveFromProtoEnum returns the [elliptic.Curve] for a given
// [commonpb.EllipticCurveType].
func curveFromProtoEnum(c commonpb.EllipticCurveType) (elliptic.Curve, error) {
switch c {
case commonpb.EllipticCurveType_NIST_P256:
return elliptic.P256(), nil
case commonpb.EllipticCurveType_NIST_P384:
return elliptic.P384(), nil
case commonpb.EllipticCurveType_NIST_P521:
return elliptic.P521(), nil
default:
return nil, errors.New("unsupported curve")
}
}
// GenerateECIESAEADHKDFPrivateKey generates a new EC key pair and returns the private key proto.
func GenerateECIESAEADHKDFPrivateKey(c commonpb.EllipticCurveType, ht commonpb.HashType, ptfmt commonpb.EcPointFormat, dekT *tinkpb.KeyTemplate, salt []byte) (*eciespb.EciesAeadHkdfPrivateKey, error) {
curve, err := curveFromProtoEnum(c)
if err != nil {
return nil, err
}
d, x, y, err := elliptic.GenerateKey(curve, rand.Reader)
if err != nil {
return nil, err
}
pubKey := eciesAEADHKDFPublicKey(c, ht, ptfmt, dekT, x.Bytes(), y.Bytes(), salt)
return eciesAEADHKDFPrivateKey(pubKey, d), nil
}
|