1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
|
// Copyright 2022 Google LLC. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package testonly
import (
"fmt"
"math/bits"
"testing"
"github.com/google/go-cmp/cmp"
"github.com/transparency-dev/merkle"
"github.com/transparency-dev/merkle/rfc6962"
)
// The reference Merkle tree hashing and proof algorithms in this file directly
// implement the definitions from RFC 6962 [1]. We use this implementation only
// for testing correctness of other more flexible and performant algorithms,
// such as the in-memory Tree type and compact ranges.
//
// [1] https://datatracker.ietf.org/doc/html/rfc6962#section-2
// refRootHash returns the root hash of a Merkle tree with the given entries.
// This is a reference implementation for cross-checking.
func refRootHash(entries [][]byte, hasher merkle.LogHasher) []byte {
if len(entries) == 0 {
return hasher.EmptyRoot()
}
if len(entries) == 1 {
return hasher.HashLeaf(entries[0])
}
split := downToPowerOfTwo(uint64(len(entries)))
return hasher.HashChildren(
refRootHash(entries[:split], hasher),
refRootHash(entries[split:], hasher))
}
// refInclusionProof returns the inclusion proof for the given leaf index in a
// Merkle tree with the given entries. This is a reference implementation for
// cross-checking.
func refInclusionProof(entries [][]byte, index uint64, hasher merkle.LogHasher) [][]byte {
size := uint64(len(entries))
if size == 1 || index >= size {
return nil
}
split := downToPowerOfTwo(size)
if index < split {
return append(
refInclusionProof(entries[:split], index, hasher),
refRootHash(entries[split:], hasher))
}
return append(
refInclusionProof(entries[split:], index-split, hasher),
refRootHash(entries[:split], hasher))
}
// refConsistencyProof returns the consistency proof for the two tree sizes, in
// a Merkle tree with the given entries. This is a reference implementation for
// cross-checking.
func refConsistencyProof(entries [][]byte, size2, size1 uint64, hasher merkle.LogHasher, haveRoot1 bool) [][]byte {
if size1 == 0 || size1 > size2 {
return nil
}
// Consistency proof for two equal sizes is empty.
if size1 == size2 {
// Record the hash of this subtree if it's not the root for which the proof
// was originally requested (which happens when size1 is a power of 2).
if !haveRoot1 {
return [][]byte{refRootHash(entries[:size1], hasher)}
}
return nil
}
// At this point: 0 < size1 < size2.
split := downToPowerOfTwo(size2)
if size1 <= split {
// Root of size1 is in the left subtree of size2. Prove that the left
// subtrees are consistent, and record the hash of the right subtree (only
// present in size2).
return append(
refConsistencyProof(entries[:split], split, size1, hasher, haveRoot1),
refRootHash(entries[split:], hasher))
}
// Root of size1 is at the same level as size2 root. Prove that the right
// subtrees are consistent. The right subtree doesn't contain the root of
// size1, so set haveRoot1 = false. Record the hash of the left subtree
// (equal in both trees).
return append(
refConsistencyProof(entries[split:], size2-split, size1-split, hasher, false),
refRootHash(entries[:split], hasher))
}
// downToPowerOfTwo returns the largest power of two smaller than x.
func downToPowerOfTwo(x uint64) uint64 {
if x < 2 {
panic("downToPowerOfTwo requires value >= 2")
}
return uint64(1) << (bits.Len64(x-1) - 1)
}
func TestDownToPowerOfTwo(t *testing.T) {
for _, inOut := range [][2]uint64{
{2, 1}, {7, 4}, {8, 4}, {63, 32}, {28937, 16384},
} {
if got, want := downToPowerOfTwo(inOut[0]), inOut[1]; got != want {
t.Errorf("downToPowerOfTwo(%d): got %d, want %d", inOut[0], got, want)
}
}
}
func TestRefInclusionProof(t *testing.T) {
for _, tc := range []struct {
index uint64
size uint64
want [][]byte
}{
{index: 0, size: 1, want: nil},
{index: 0, size: 2, want: [][]byte{
hd("96a296d224f285c67bee93c30f8a309157f0daa35dc5b87e410b78630a09cfc7"),
}},
{index: 1, size: 2, want: [][]byte{
hd("6e340b9cffb37a989ca544e6bb780a2c78901d3fb33738768511a30617afa01d"),
}},
{index: 2, size: 3, want: [][]byte{
hd("fac54203e7cc696cf0dfcb42c92a1d9dbaf70ad9e621f4bd8d98662f00e3c125"),
}},
{index: 1, size: 5, want: [][]byte{
hd("6e340b9cffb37a989ca544e6bb780a2c78901d3fb33738768511a30617afa01d"),
hd("5f083f0a1a33ca076a95279832580db3e0ef4584bdff1f54c8a360f50de3031e"),
hd("bc1a0643b12e4d2d7c77918f44e0f4f79a838b6cf9ec5b5c283e1f4d88599e6b"),
}},
{index: 0, size: 8, want: [][]byte{
hd("96a296d224f285c67bee93c30f8a309157f0daa35dc5b87e410b78630a09cfc7"),
hd("5f083f0a1a33ca076a95279832580db3e0ef4584bdff1f54c8a360f50de3031e"),
hd("6b47aaf29ee3c2af9af889bc1fb9254dabd31177f16232dd6aab035ca39bf6e4"),
}},
{index: 5, size: 8, want: [][]byte{
hd("bc1a0643b12e4d2d7c77918f44e0f4f79a838b6cf9ec5b5c283e1f4d88599e6b"),
hd("ca854ea128ed050b41b35ffc1b87b8eb2bde461e9e3b5596ece6b9d5975a0ae0"),
hd("d37ee418976dd95753c1c73862b9398fa2a2cf9b4ff0fdfe8b30cd95209614b7"),
}},
} {
t.Run(fmt.Sprintf("%d:%d", tc.index, tc.size), func(t *testing.T) {
entries := LeafInputs()
got := refInclusionProof(entries[:tc.size], tc.index, rfc6962.DefaultHasher)
if diff := cmp.Diff(got, tc.want); diff != "" {
t.Errorf("refInclusionProof: diff (-got +want)\n%s", diff)
}
})
}
}
func TestRefConsistencyProof(t *testing.T) {
for _, tc := range []struct {
size1 uint64
size2 uint64
want [][]byte
}{
{size1: 1, size2: 1, want: nil},
{size1: 1, size2: 8, want: [][]byte{
hd("96a296d224f285c67bee93c30f8a309157f0daa35dc5b87e410b78630a09cfc7"),
hd("5f083f0a1a33ca076a95279832580db3e0ef4584bdff1f54c8a360f50de3031e"),
hd("6b47aaf29ee3c2af9af889bc1fb9254dabd31177f16232dd6aab035ca39bf6e4"),
}},
{size1: 2, size2: 5, want: [][]byte{
hd("5f083f0a1a33ca076a95279832580db3e0ef4584bdff1f54c8a360f50de3031e"),
hd("bc1a0643b12e4d2d7c77918f44e0f4f79a838b6cf9ec5b5c283e1f4d88599e6b"),
}},
{size1: 6, size2: 8, want: [][]byte{
hd("0ebc5d3437fbe2db158b9f126a1d118e308181031d0a949f8dededebc558ef6a"),
hd("ca854ea128ed050b41b35ffc1b87b8eb2bde461e9e3b5596ece6b9d5975a0ae0"),
hd("d37ee418976dd95753c1c73862b9398fa2a2cf9b4ff0fdfe8b30cd95209614b7"),
}},
} {
t.Run(fmt.Sprintf("%d:%d", tc.size1, tc.size2), func(t *testing.T) {
entries := LeafInputs()
got := refConsistencyProof(entries[:tc.size2], tc.size2, tc.size1, rfc6962.DefaultHasher, true)
if diff := cmp.Diff(got, tc.want); diff != "" {
t.Errorf("refConsistencyProof: diff (-got +want)\n%s", diff)
}
})
}
}
|