1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
|
// Copyright 2022 Google LLC. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package testonly
import (
"github.com/transparency-dev/merkle"
"github.com/transparency-dev/merkle/compact"
"github.com/transparency-dev/merkle/proof"
)
// Tree implements an append-only Merkle tree. For testing.
type Tree struct {
hasher merkle.LogHasher
size uint64
hashes [][][]byte // Node hashes, indexed by node (level, index).
}
// New returns a new empty Merkle tree.
func New(hasher merkle.LogHasher) *Tree {
return &Tree{hasher: hasher}
}
// AppendData adds the leaf hashes of the given entries to the end of the tree.
func (t *Tree) AppendData(entries ...[]byte) {
for _, data := range entries {
t.appendImpl(t.hasher.HashLeaf(data))
}
}
// Append adds the given leaf hashes to the end of the tree.
func (t *Tree) Append(hashes ...[]byte) {
for _, hash := range hashes {
t.appendImpl(hash)
}
}
func (t *Tree) appendImpl(hash []byte) {
level := 0
for ; (t.size>>level)&1 == 1; level++ {
row := append(t.hashes[level], hash)
hash = t.hasher.HashChildren(row[len(row)-2], hash)
t.hashes[level] = row
}
if level > len(t.hashes) {
panic("gap in tree appends")
} else if level == len(t.hashes) {
t.hashes = append(t.hashes, nil)
}
t.hashes[level] = append(t.hashes[level], hash)
t.size++
}
// Size returns the current number of leaves in the tree.
func (t *Tree) Size() uint64 {
return t.size
}
// LeafHash returns the leaf hash at the given index.
// Requires 0 <= index < Size(), otherwise panics.
func (t *Tree) LeafHash(index uint64) []byte {
return t.hashes[0][index]
}
// Hash returns the current root hash of the tree.
func (t *Tree) Hash() []byte {
return t.HashAt(t.size)
}
// HashAt returns the root hash at the given size.
// Requires 0 <= size <= Size(), otherwise panics.
func (t *Tree) HashAt(size uint64) []byte {
if size == 0 {
return t.hasher.EmptyRoot()
}
hashes := t.getNodes(compact.RangeNodes(0, size, nil))
hash := hashes[len(hashes)-1]
for i := len(hashes) - 2; i >= 0; i-- {
hash = t.hasher.HashChildren(hashes[i], hash)
}
return hash
}
// InclusionProof returns the inclusion proof for the given leaf index in the
// tree of the given size. Requires 0 <= index < size <= Size(), otherwise may
// panic.
func (t *Tree) InclusionProof(index, size uint64) ([][]byte, error) {
nodes, err := proof.Inclusion(index, size)
if err != nil {
return nil, err
}
return nodes.Rehash(t.getNodes(nodes.IDs), t.hasher.HashChildren)
}
// ConsistencyProof returns the consistency proof between the two given tree
// sizes. Requires 0 <= size1 <= size2 <= Size(), otherwise may panic.
func (t *Tree) ConsistencyProof(size1, size2 uint64) ([][]byte, error) {
nodes, err := proof.Consistency(size1, size2)
if err != nil {
return nil, err
}
return nodes.Rehash(t.getNodes(nodes.IDs), t.hasher.HashChildren)
}
func (t *Tree) getNodes(ids []compact.NodeID) [][]byte {
hashes := make([][]byte, len(ids))
for i, id := range ids {
hashes[i] = t.hashes[id.Level][id.Index]
}
return hashes
}
|