1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
|
// Copyright 2012, Jeramey Crawford <jeramey@antihe.ro>
// Copyright 2013, Jonas mg
// All rights reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the LICENSE file.
// Package sha256_crypt implements Ulrich Drepper's SHA256-crypt password
// hashing algorithm.
//
// The specification for this algorithm can be found here:
// http://www.akkadia.org/drepper/SHA-crypt.txt
package sha256_crypt
import (
"bytes"
"crypto/sha256"
"strconv"
"github.com/tredoe/osutil/user/crypt"
"github.com/tredoe/osutil/user/crypt/common"
)
func init() {
crypt.RegisterCrypt(crypt.SHA256, New, MagicPrefix)
}
const (
MagicPrefix = "$5$"
SaltLenMin = 1
SaltLenMax = 16
RoundsMin = 1000
RoundsMax = 999999999
RoundsDefault = 5000
)
var _rounds = []byte("rounds=")
type crypter struct{ Salt common.Salt }
// New returns a new crypt.Crypter computing the SHA256-crypt password hashing.
func New() crypt.Crypter {
return &crypter{GetSalt()}
}
func (c *crypter) Generate(key, salt []byte) (string, error) {
var rounds int
var isRoundsDef bool
if len(salt) == 0 {
salt = c.Salt.GenerateWRounds(SaltLenMax, RoundsDefault)
}
if !bytes.HasPrefix(salt, c.Salt.MagicPrefix) {
return "", common.ErrSaltPrefix
}
saltToks := bytes.Split(salt, []byte{'$'})
if len(saltToks) < 3 {
return "", common.ErrSaltFormat
}
if bytes.HasPrefix(saltToks[2], _rounds) {
isRoundsDef = true
pr, err := strconv.ParseInt(string(saltToks[2][7:]), 10, 32)
if err != nil {
return "", common.ErrSaltRounds
}
rounds = int(pr)
if rounds < RoundsMin {
rounds = RoundsMin
} else if rounds > RoundsMax {
rounds = RoundsMax
}
salt = saltToks[3]
} else {
rounds = RoundsDefault
salt = saltToks[2]
}
if len(salt) > 16 {
salt = salt[0:16]
}
// Compute alternate SHA256 sum with input KEY, SALT, and KEY.
Alternate := sha256.New()
Alternate.Write(key)
Alternate.Write(salt)
Alternate.Write(key)
AlternateSum := Alternate.Sum(nil) // 32 bytes
A := sha256.New()
A.Write(key)
A.Write(salt)
// Add for any character in the key one byte of the alternate sum.
i := len(key)
for ; i > 32; i -= 32 {
A.Write(AlternateSum)
}
A.Write(AlternateSum[0:i])
// Take the binary representation of the length of the key and for every add
// the alternate sum, for every 0 the key.
for i = len(key); i > 0; i >>= 1 {
if (i & 1) != 0 {
A.Write(AlternateSum)
} else {
A.Write(key)
}
}
Asum := A.Sum(nil)
// Start computation of P byte sequence.
P := sha256.New()
// For every character in the password add the entire password.
for i = 0; i < len(key); i++ {
P.Write(key)
}
Psum := P.Sum(nil)
// Create byte sequence P.
Pseq := make([]byte, 0, len(key))
for i = len(key); i > 32; i -= 32 {
Pseq = append(Pseq, Psum...)
}
Pseq = append(Pseq, Psum[0:i]...)
// Start computation of S byte sequence.
S := sha256.New()
for i = 0; i < (16 + int(Asum[0])); i++ {
S.Write(salt)
}
Ssum := S.Sum(nil)
// Create byte sequence S.
Sseq := make([]byte, 0, len(salt))
for i = len(salt); i > 32; i -= 32 {
Sseq = append(Sseq, Ssum...)
}
Sseq = append(Sseq, Ssum[0:i]...)
Csum := Asum
// Repeatedly run the collected hash value through SHA256 to burn CPU cycles.
for i = 0; i < rounds; i++ {
C := sha256.New()
// Add key or last result.
if (i & 1) != 0 {
C.Write(Pseq)
} else {
C.Write(Csum)
}
// Add salt for numbers not divisible by 3.
if (i % 3) != 0 {
C.Write(Sseq)
}
// Add key for numbers not divisible by 7.
if (i % 7) != 0 {
C.Write(Pseq)
}
// Add key or last result.
if (i & 1) != 0 {
C.Write(Csum)
} else {
C.Write(Pseq)
}
Csum = C.Sum(nil)
}
out := make([]byte, 0, 80)
out = append(out, c.Salt.MagicPrefix...)
if isRoundsDef {
out = append(out, []byte("rounds="+strconv.Itoa(rounds)+"$")...)
}
out = append(out, salt...)
out = append(out, '$')
out = append(out, common.Base64_24Bit([]byte{
Csum[20], Csum[10], Csum[0],
Csum[11], Csum[1], Csum[21],
Csum[2], Csum[22], Csum[12],
Csum[23], Csum[13], Csum[3],
Csum[14], Csum[4], Csum[24],
Csum[5], Csum[25], Csum[15],
Csum[26], Csum[16], Csum[6],
Csum[17], Csum[7], Csum[27],
Csum[8], Csum[28], Csum[18],
Csum[29], Csum[19], Csum[9],
Csum[30], Csum[31],
})...)
// Clean sensitive data.
A.Reset()
Alternate.Reset()
P.Reset()
for i = 0; i < len(Asum); i++ {
Asum[i] = 0
}
for i = 0; i < len(AlternateSum); i++ {
AlternateSum[i] = 0
}
for i = 0; i < len(Pseq); i++ {
Pseq[i] = 0
}
return string(out), nil
}
func (c *crypter) Verify(hashedKey string, key []byte) error {
newHash, err := c.Generate(key, []byte(hashedKey))
if err != nil {
return err
}
if newHash != hashedKey {
return crypt.ErrKeyMismatch
}
return nil
}
func (c *crypter) Cost(hashedKey string) (int, error) {
saltToks := bytes.Split([]byte(hashedKey), []byte{'$'})
if len(saltToks) < 3 {
return 0, common.ErrSaltFormat
}
if !bytes.HasPrefix(saltToks[2], _rounds) {
return RoundsDefault, nil
}
roundToks := bytes.Split(saltToks[2], []byte{'='})
cost, err := strconv.ParseInt(string(roundToks[1]), 10, 0)
return int(cost), err
}
func (c *crypter) SetSalt(salt common.Salt) { c.Salt = salt }
func GetSalt() common.Salt {
return common.Salt{
MagicPrefix: []byte(MagicPrefix),
SaltLenMin: SaltLenMin,
SaltLenMax: SaltLenMax,
RoundsDefault: RoundsDefault,
RoundsMin: RoundsMin,
RoundsMax: RoundsMax,
}
}
|