1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009
|
// Copyright (c) 2012-2020 Ugorji Nwoke. All rights reserved.
// Use of this source code is governed by a MIT license found in the LICENSE file.
package codec
// Contains code shared by both encode and decode.
// Some shared ideas around encoding/decoding
// ------------------------------------------
//
// If an interface{} is passed, we first do a type assertion to see if it is
// a primitive type or a map/slice of primitive types, and use a fastpath to handle it.
//
// If we start with a reflect.Value, we are already in reflect.Value land and
// will try to grab the function for the underlying Type and directly call that function.
// This is more performant than calling reflect.Value.Interface().
//
// This still helps us bypass many layers of reflection, and give best performance.
//
// Containers
// ------------
// Containers in the stream are either associative arrays (key-value pairs) or
// regular arrays (indexed by incrementing integers).
//
// Some streams support indefinite-length containers, and use a breaking
// byte-sequence to denote that the container has come to an end.
//
// Some streams also are text-based, and use explicit separators to denote the
// end/beginning of different values.
//
// Philosophy
// ------------
// On decode, this codec will update containers appropriately:
// - If struct, update fields from stream into fields of struct.
// If field in stream not found in struct, handle appropriately (based on option).
// If a struct field has no corresponding value in the stream, leave it AS IS.
// If nil in stream, set value to nil/zero value.
// - If map, update map from stream.
// If the stream value is NIL, set the map to nil.
// - if slice, try to update up to length of array in stream.
// if container len is less than stream array length,
// and container cannot be expanded, handled (based on option).
// This means you can decode 4-element stream array into 1-element array.
//
// ------------------------------------
// On encode, user can specify omitEmpty. This means that the value will be omitted
// if the zero value. The problem may occur during decode, where omitted values do not affect
// the value being decoded into. This means that if decoding into a struct with an
// int field with current value=5, and the field is omitted in the stream, then after
// decoding, the value will still be 5 (not 0).
// omitEmpty only works if you guarantee that you always decode into zero-values.
//
// ------------------------------------
// We could have truncated a map to remove keys not available in the stream,
// or set values in the struct which are not in the stream to their zero values.
// We decided against it because there is no efficient way to do it.
// We may introduce it as an option later.
// However, that will require enabling it for both runtime and code generation modes.
//
// To support truncate, we need to do 2 passes over the container:
// map
// - first collect all keys (e.g. in k1)
// - for each key in stream, mark k1 that the key should not be removed
// - after updating map, do second pass and call delete for all keys in k1 which are not marked
// struct:
// - for each field, track the *typeInfo s1
// - iterate through all s1, and for each one not marked, set value to zero
// - this involves checking the possible anonymous fields which are nil ptrs.
// too much work.
//
// ------------------------------------------
// Error Handling is done within the library using panic.
//
// This way, the code doesn't have to keep checking if an error has happened,
// and we don't have to keep sending the error value along with each call
// or storing it in the En|Decoder and checking it constantly along the way.
//
// We considered storing the error is En|Decoder.
// - once it has its err field set, it cannot be used again.
// - panicing will be optional, controlled by const flag.
// - code should always check error first and return early.
//
// We eventually decided against it as it makes the code clumsier to always
// check for these error conditions.
//
// ------------------------------------------
// We use sync.Pool only for the aid of long-lived objects shared across multiple goroutines.
// Encoder, Decoder, enc|decDriver, reader|writer, etc do not fall into this bucket.
//
// Also, GC is much better now, eliminating some of the reasons to use a shared pool structure.
// Instead, the short-lived objects use free-lists that live as long as the object exists.
//
// ------------------------------------------
// Performance is affected by the following:
// - Bounds Checking
// - Inlining
// - Pointer chasing
// This package tries hard to manage the performance impact of these.
//
// ------------------------------------------
// To alleviate performance due to pointer-chasing:
// - Prefer non-pointer values in a struct field
// - Refer to these directly within helper classes
// e.g. json.go refers directly to d.d.decRd
//
// We made the changes to embed En/Decoder in en/decDriver,
// but we had to explicitly reference the fields as opposed to using a function
// to get the better performance that we were looking for.
// For example, we explicitly call d.d.decRd.fn() instead of d.d.r().fn().
//
// ------------------------------------------
// Bounds Checking
// - Allow bytesDecReader to incur "bounds check error", and
// recover that as an io.EOF.
// This allows the bounds check branch to always be taken by the branch predictor,
// giving better performance (in theory), while ensuring that the code is shorter.
//
// ------------------------------------------
// Escape Analysis
// - Prefer to return non-pointers if the value is used right away.
// Newly allocated values returned as pointers will be heap-allocated as they escape.
//
// Prefer functions and methods that
// - take no parameters and
// - return no results and
// - do not allocate.
// These are optimized by the runtime.
// For example, in json, we have dedicated functions for ReadMapElemKey, etc
// which do not delegate to readDelim, as readDelim takes a parameter.
// The difference in runtime was as much as 5%.
//
// ------------------------------------------
// Handling Nil
// - In dynamic (reflection) mode, decodeValue and encodeValue handle nil at the top
// - Consequently, methods used with them as a parent in the chain e.g. kXXX
// methods do not handle nil.
// - Fastpath methods also do not handle nil.
// The switch called in (en|de)code(...) handles it so the dependent calls don't have to.
// - codecgen will handle nil before calling into the library for further work also.
//
// ------------------------------------------
// Passing reflect.Kind to functions that take a reflect.Value
// - Note that reflect.Value.Kind() is very cheap, as its fundamentally a binary AND of 2 numbers
//
// ------------------------------------------
// Transient values during decoding
//
// With reflection, the stack is not used. Consequently, values which may be stack-allocated in
// normal use will cause a heap allocation when using reflection.
//
// There are cases where we know that a value is transient, and we just need to decode into it
// temporarily so we can right away use its value for something else.
//
// In these situations, we can elide the heap allocation by being deliberate with use of a pre-cached
// scratch memory or scratch value.
//
// We use this for situations:
// - decode into a temp value x, and then set x into an interface
// - decode into a temp value, for use as a map key, to lookup up a map value
// - decode into a temp value, for use as a map value, to set into a map
// - decode into a temp value, for sending into a channel
//
// By definition, Transient values are NEVER pointer-shaped values,
// like pointer, func, map, chan. Using transient for pointer-shaped values
// can lead to data corruption when GC tries to follow what it saw as a pointer at one point.
//
// In general, transient values are values which can be decoded as an atomic value
// using a single call to the decDriver. This naturally includes bool or numeric types.
//
// Note that some values which "contain" pointers, specifically string and slice,
// can also be transient. In the case of string, it is decoded as an atomic value.
// In the case of a slice, decoding into its elements always uses an addressable
// value in memory ie we grow the slice, and then decode directly into the memory
// address corresponding to that index in the slice.
//
// To handle these string and slice values, we have to use a scratch value
// which has the same shape of a string or slice.
//
// Consequently, the full range of types which can be transient is:
// - numbers
// - bool
// - string
// - slice
//
// and whbut we MUST use a scratch space with that element
// being defined as an unsafe.Pointer to start with.
//
// We have to be careful with maps. Because we iterate map keys and values during a range,
// we must have 2 variants of the scratch space/value for maps and keys separately.
//
// These are the TransientAddrK and TransientAddr2K methods of decPerType.
import (
"encoding"
"encoding/binary"
"errors"
"fmt"
"io"
"math"
"reflect"
"runtime"
"sort"
"strconv"
"strings"
"sync"
"sync/atomic"
"time"
"unicode/utf8"
)
// if debugging is true, then
// - within Encode/Decode, do not recover from panic's
// - etc
//
// Note: Negative tests that check for errors will fail, so only use this
// when debugging, and run only one test at a time preferably.
//
// Note: RPC tests depend on getting the error from an Encode/Decode call.
// Consequently, they will always fail if debugging = true.
const debugging = false
const (
// containerLenUnknown is length returned from Read(Map|Array)Len
// when a format doesn't know apiori.
// For example, json doesn't pre-determine the length of a container (sequence/map).
containerLenUnknown = -1
// containerLenNil is length returned from Read(Map|Array)Len
// when a 'nil' was encountered in the stream.
containerLenNil = math.MinInt32
// [N]byte is handled by converting to []byte first,
// and sending to the dedicated fast-path function for []byte.
//
// Code exists in case our understanding is wrong.
// keep the defensive code behind this flag, so we can remove/hide it if needed.
// For now, we enable the defensive code (ie set it to true).
handleBytesWithinKArray = true
// Support encoding.(Binary|Text)(Unm|M)arshaler.
// This constant flag will enable or disable it.
supportMarshalInterfaces = true
// bytesFreeListNoCache is used for debugging, when we want to skip using a cache of []byte.
bytesFreeListNoCache = false
// size of the cacheline: defaulting to value for archs: amd64, arm64, 386
// should use "runtime/internal/sys".CacheLineSize, but that is not exposed.
cacheLineSize = 64
wordSizeBits = 32 << (^uint(0) >> 63) // strconv.IntSize
wordSize = wordSizeBits / 8
// MARKER: determines whether to skip calling fastpath(En|De)codeTypeSwitch.
// Calling the fastpath switch in encode() or decode() could be redundant,
// as we still have to introspect it again within fnLoad
// to determine the function to use for values of that type.
skipFastpathTypeSwitchInDirectCall = false
)
const cpu32Bit = ^uint(0)>>32 == 0
type rkind byte
const (
rkindPtr = rkind(reflect.Ptr)
rkindString = rkind(reflect.String)
rkindChan = rkind(reflect.Chan)
)
type mapKeyFastKind uint8
const (
mapKeyFastKind32 = iota + 1
mapKeyFastKind32ptr
mapKeyFastKind64
mapKeyFastKind64ptr
mapKeyFastKindStr
)
var (
// use a global mutex to ensure each Handle is initialized.
// We do this, so we don't have to store the basicHandle mutex
// directly in BasicHandle, so it can be shallow-copied.
handleInitMu sync.Mutex
must mustHdl
halt panicHdl
digitCharBitset bitset256
numCharBitset bitset256
whitespaceCharBitset bitset256
asciiAlphaNumBitset bitset256
// numCharWithExpBitset64 bitset64
// numCharNoExpBitset64 bitset64
// whitespaceCharBitset64 bitset64
//
// // hasptrBitset sets bit for all kinds which always have internal pointers
// hasptrBitset bitset32
// refBitset sets bit for all kinds which are direct internal references
refBitset bitset32
// isnilBitset sets bit for all kinds which can be compared to nil
isnilBitset bitset32
// numBoolBitset sets bit for all number and bool kinds
numBoolBitset bitset32
// numBoolStrSliceBitset sets bits for all kinds which are numbers, bool, strings and slices
numBoolStrSliceBitset bitset32
// scalarBitset sets bit for all kinds which are scalars/primitives and thus immutable
scalarBitset bitset32
mapKeyFastKindVals [32]mapKeyFastKind
// codecgen is set to true by codecgen, so that tests, etc can use this information as needed.
codecgen bool
oneByteArr [1]byte
zeroByteSlice = oneByteArr[:0:0]
eofReader devNullReader
)
var (
errMapTypeNotMapKind = errors.New("MapType MUST be of Map Kind")
errSliceTypeNotSliceKind = errors.New("SliceType MUST be of Slice Kind")
errExtFnWriteExtUnsupported = errors.New("BytesExt.WriteExt is not supported")
errExtFnReadExtUnsupported = errors.New("BytesExt.ReadExt is not supported")
errExtFnConvertExtUnsupported = errors.New("InterfaceExt.ConvertExt is not supported")
errExtFnUpdateExtUnsupported = errors.New("InterfaceExt.UpdateExt is not supported")
errPanicUndefined = errors.New("panic: undefined error")
errHandleInited = errors.New("cannot modify initialized Handle")
errNoFormatHandle = errors.New("no handle (cannot identify format)")
)
var pool4tiload = sync.Pool{
New: func() interface{} {
return &typeInfoLoad{
etypes: make([]uintptr, 0, 4),
sfis: make([]structFieldInfo, 0, 4),
sfiNames: make(map[string]uint16, 4),
}
},
}
func init() {
xx := func(f mapKeyFastKind, k ...reflect.Kind) {
for _, v := range k {
mapKeyFastKindVals[byte(v)&31] = f // 'v % 32' equal to 'v & 31'
}
}
var f mapKeyFastKind
f = mapKeyFastKind64
if wordSizeBits == 32 {
f = mapKeyFastKind32
}
xx(f, reflect.Int, reflect.Uint, reflect.Uintptr)
f = mapKeyFastKind64ptr
if wordSizeBits == 32 {
f = mapKeyFastKind32ptr
}
xx(f, reflect.Ptr)
xx(mapKeyFastKindStr, reflect.String)
xx(mapKeyFastKind32, reflect.Uint32, reflect.Int32, reflect.Float32)
xx(mapKeyFastKind64, reflect.Uint64, reflect.Int64, reflect.Float64)
numBoolBitset.
set(byte(reflect.Bool)).
set(byte(reflect.Int)).
set(byte(reflect.Int8)).
set(byte(reflect.Int16)).
set(byte(reflect.Int32)).
set(byte(reflect.Int64)).
set(byte(reflect.Uint)).
set(byte(reflect.Uint8)).
set(byte(reflect.Uint16)).
set(byte(reflect.Uint32)).
set(byte(reflect.Uint64)).
set(byte(reflect.Uintptr)).
set(byte(reflect.Float32)).
set(byte(reflect.Float64)).
set(byte(reflect.Complex64)).
set(byte(reflect.Complex128))
numBoolStrSliceBitset = numBoolBitset
numBoolStrSliceBitset.
set(byte(reflect.String)).
set(byte(reflect.Slice))
scalarBitset = numBoolBitset
scalarBitset.
set(byte(reflect.String))
// MARKER: reflect.Array is not a scalar, as its contents can be modified.
refBitset.
set(byte(reflect.Map)).
set(byte(reflect.Ptr)).
set(byte(reflect.Func)).
set(byte(reflect.Chan)).
set(byte(reflect.UnsafePointer))
isnilBitset = refBitset
isnilBitset.
set(byte(reflect.Interface)).
set(byte(reflect.Slice))
// hasptrBitset = isnilBitset
//
// hasptrBitset.
// set(byte(reflect.String))
for i := byte(0); i <= utf8.RuneSelf; i++ {
if (i >= '0' && i <= '9') || (i >= 'a' && i <= 'z') || (i >= 'A' && i <= 'Z') {
asciiAlphaNumBitset.set(i)
}
switch i {
case ' ', '\t', '\r', '\n':
whitespaceCharBitset.set(i)
case '0', '1', '2', '3', '4', '5', '6', '7', '8', '9':
digitCharBitset.set(i)
numCharBitset.set(i)
case '.', '+', '-':
numCharBitset.set(i)
case 'e', 'E':
numCharBitset.set(i)
}
}
}
// driverStateManager supports the runtime state of an (enc|dec)Driver.
//
// During a side(En|De)code call, we can capture the state, reset it,
// and then restore it later to continue the primary encoding/decoding.
type driverStateManager interface {
resetState()
captureState() interface{}
restoreState(state interface{})
}
type bdAndBdread struct {
bdRead bool
bd byte
}
func (x bdAndBdread) captureState() interface{} { return x }
func (x *bdAndBdread) resetState() { x.bd, x.bdRead = 0, false }
func (x *bdAndBdread) reset() { x.resetState() }
func (x *bdAndBdread) restoreState(v interface{}) { *x = v.(bdAndBdread) }
type clsErr struct {
err error // error on closing
closed bool // is it closed?
}
type charEncoding uint8
const (
_ charEncoding = iota // make 0 unset
cUTF8
cUTF16LE
cUTF16BE
cUTF32LE
cUTF32BE
// Deprecated: not a true char encoding value
cRAW charEncoding = 255
)
// valueType is the stream type
type valueType uint8
const (
valueTypeUnset valueType = iota
valueTypeNil
valueTypeInt
valueTypeUint
valueTypeFloat
valueTypeBool
valueTypeString
valueTypeSymbol
valueTypeBytes
valueTypeMap
valueTypeArray
valueTypeTime
valueTypeExt
// valueTypeInvalid = 0xff
)
var valueTypeStrings = [...]string{
"Unset",
"Nil",
"Int",
"Uint",
"Float",
"Bool",
"String",
"Symbol",
"Bytes",
"Map",
"Array",
"Timestamp",
"Ext",
}
func (x valueType) String() string {
if int(x) < len(valueTypeStrings) {
return valueTypeStrings[x]
}
return strconv.FormatInt(int64(x), 10)
}
// note that containerMapStart and containerArraySend are not sent.
// This is because the ReadXXXStart and EncodeXXXStart already does these.
type containerState uint8
const (
_ containerState = iota
containerMapStart
containerMapKey
containerMapValue
containerMapEnd
containerArrayStart
containerArrayElem
containerArrayEnd
)
// do not recurse if a containing type refers to an embedded type
// which refers back to its containing type (via a pointer).
// The second time this back-reference happens, break out,
// so as not to cause an infinite loop.
const rgetMaxRecursion = 2
// fauxUnion is used to keep track of the primitives decoded.
//
// Without it, we would have to decode each primitive and wrap it
// in an interface{}, causing an allocation.
// In this model, the primitives are decoded in a "pseudo-atomic" fashion,
// so we can rest assured that no other decoding happens while these
// primitives are being decoded.
//
// maps and arrays are not handled by this mechanism.
type fauxUnion struct {
// r RawExt // used for RawExt, uint, []byte.
// primitives below
u uint64
i int64
f float64
l []byte
s string
// ---- cpu cache line boundary?
t time.Time
b bool
// state
v valueType
}
// typeInfoLoad is a transient object used while loading up a typeInfo.
type typeInfoLoad struct {
etypes []uintptr
sfis []structFieldInfo
sfiNames map[string]uint16
}
func (x *typeInfoLoad) reset() {
x.etypes = x.etypes[:0]
x.sfis = x.sfis[:0]
for k := range x.sfiNames { // optimized to zero the map
delete(x.sfiNames, k)
}
}
// mirror json.Marshaler and json.Unmarshaler here,
// so we don't import the encoding/json package
type jsonMarshaler interface {
MarshalJSON() ([]byte, error)
}
type jsonUnmarshaler interface {
UnmarshalJSON([]byte) error
}
type isZeroer interface {
IsZero() bool
}
type isCodecEmptyer interface {
IsCodecEmpty() bool
}
type codecError struct {
err error
name string
pos int
encode bool
}
func (e *codecError) Cause() error {
return e.err
}
func (e *codecError) Unwrap() error {
return e.err
}
func (e *codecError) Error() string {
if e.encode {
return fmt.Sprintf("%s encode error: %v", e.name, e.err)
}
return fmt.Sprintf("%s decode error [pos %d]: %v", e.name, e.pos, e.err)
}
func wrapCodecErr(in error, name string, numbytesread int, encode bool) (out error) {
x, ok := in.(*codecError)
if ok && x.pos == numbytesread && x.name == name && x.encode == encode {
return in
}
return &codecError{in, name, numbytesread, encode}
}
var (
bigen bigenHelper
bigenstd = binary.BigEndian
structInfoFieldName = "_struct"
mapStrIntfTyp = reflect.TypeOf(map[string]interface{}(nil))
mapIntfIntfTyp = reflect.TypeOf(map[interface{}]interface{}(nil))
intfSliceTyp = reflect.TypeOf([]interface{}(nil))
intfTyp = intfSliceTyp.Elem()
reflectValTyp = reflect.TypeOf((*reflect.Value)(nil)).Elem()
stringTyp = reflect.TypeOf("")
timeTyp = reflect.TypeOf(time.Time{})
rawExtTyp = reflect.TypeOf(RawExt{})
rawTyp = reflect.TypeOf(Raw{})
uintptrTyp = reflect.TypeOf(uintptr(0))
uint8Typ = reflect.TypeOf(uint8(0))
uint8SliceTyp = reflect.TypeOf([]uint8(nil))
uintTyp = reflect.TypeOf(uint(0))
intTyp = reflect.TypeOf(int(0))
mapBySliceTyp = reflect.TypeOf((*MapBySlice)(nil)).Elem()
binaryMarshalerTyp = reflect.TypeOf((*encoding.BinaryMarshaler)(nil)).Elem()
binaryUnmarshalerTyp = reflect.TypeOf((*encoding.BinaryUnmarshaler)(nil)).Elem()
textMarshalerTyp = reflect.TypeOf((*encoding.TextMarshaler)(nil)).Elem()
textUnmarshalerTyp = reflect.TypeOf((*encoding.TextUnmarshaler)(nil)).Elem()
jsonMarshalerTyp = reflect.TypeOf((*jsonMarshaler)(nil)).Elem()
jsonUnmarshalerTyp = reflect.TypeOf((*jsonUnmarshaler)(nil)).Elem()
selferTyp = reflect.TypeOf((*Selfer)(nil)).Elem()
missingFielderTyp = reflect.TypeOf((*MissingFielder)(nil)).Elem()
iszeroTyp = reflect.TypeOf((*isZeroer)(nil)).Elem()
isCodecEmptyerTyp = reflect.TypeOf((*isCodecEmptyer)(nil)).Elem()
isSelferViaCodecgenerTyp = reflect.TypeOf((*isSelferViaCodecgener)(nil)).Elem()
uint8TypId = rt2id(uint8Typ)
uint8SliceTypId = rt2id(uint8SliceTyp)
rawExtTypId = rt2id(rawExtTyp)
rawTypId = rt2id(rawTyp)
intfTypId = rt2id(intfTyp)
timeTypId = rt2id(timeTyp)
stringTypId = rt2id(stringTyp)
mapStrIntfTypId = rt2id(mapStrIntfTyp)
mapIntfIntfTypId = rt2id(mapIntfIntfTyp)
intfSliceTypId = rt2id(intfSliceTyp)
// mapBySliceTypId = rt2id(mapBySliceTyp)
intBitsize = uint8(intTyp.Bits())
uintBitsize = uint8(uintTyp.Bits())
// bsAll0x00 = []byte{0, 0, 0, 0, 0, 0, 0, 0}
bsAll0xff = []byte{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}
chkOvf checkOverflow
)
var defTypeInfos = NewTypeInfos([]string{"codec", "json"})
// SelfExt is a sentinel extension signifying that types
// registered with it SHOULD be encoded and decoded
// based on the native mode of the format.
//
// This allows users to define a tag for an extension,
// but signify that the types should be encoded/decoded as the native encoding.
// This way, users need not also define how to encode or decode the extension.
var SelfExt = &extFailWrapper{}
// Selfer defines methods by which a value can encode or decode itself.
//
// Any type which implements Selfer will be able to encode or decode itself.
// Consequently, during (en|de)code, this takes precedence over
// (text|binary)(M|Unm)arshal or extension support.
//
// By definition, it is not allowed for a Selfer to directly call Encode or Decode on itself.
// If that is done, Encode/Decode will rightfully fail with a Stack Overflow style error.
// For example, the snippet below will cause such an error.
//
// type testSelferRecur struct{}
// func (s *testSelferRecur) CodecEncodeSelf(e *Encoder) { e.MustEncode(s) }
// func (s *testSelferRecur) CodecDecodeSelf(d *Decoder) { d.MustDecode(s) }
//
// Note: *the first set of bytes of any value MUST NOT represent nil in the format*.
// This is because, during each decode, we first check the the next set of bytes
// represent nil, and if so, we just set the value to nil.
type Selfer interface {
CodecEncodeSelf(*Encoder)
CodecDecodeSelf(*Decoder)
}
type isSelferViaCodecgener interface {
codecSelferViaCodecgen()
}
// MissingFielder defines the interface allowing structs to internally decode or encode
// values which do not map to struct fields.
//
// We expect that this interface is bound to a pointer type (so the mutation function works).
//
// A use-case is if a version of a type unexports a field, but you want compatibility between
// both versions during encoding and decoding.
//
// Note that the interface is completely ignored during codecgen.
type MissingFielder interface {
// CodecMissingField is called to set a missing field and value pair.
//
// It returns true if the missing field was set on the struct.
CodecMissingField(field []byte, value interface{}) bool
// CodecMissingFields returns the set of fields which are not struct fields.
//
// Note that the returned map may be mutated by the caller.
CodecMissingFields() map[string]interface{}
}
// MapBySlice is a tag interface that denotes the slice or array value should encode as a map
// in the stream, and can be decoded from a map in the stream.
//
// The slice or array must contain a sequence of key-value pairs.
// The length of the slice or array must be even (fully divisible by 2).
//
// This affords storing a map in a specific sequence in the stream.
//
// Example usage:
//
// type T1 []string // or []int or []Point or any other "slice" type
// func (_ T1) MapBySlice{} // T1 now implements MapBySlice, and will be encoded as a map
// type T2 struct { KeyValues T1 }
//
// var kvs = []string{"one", "1", "two", "2", "three", "3"}
// var v2 = T2{ KeyValues: T1(kvs) }
// // v2 will be encoded like the map: {"KeyValues": {"one": "1", "two": "2", "three": "3"} }
//
// The support of MapBySlice affords the following:
// - A slice or array type which implements MapBySlice will be encoded as a map
// - A slice can be decoded from a map in the stream
type MapBySlice interface {
MapBySlice()
}
// basicHandleRuntimeState holds onto all BasicHandle runtime and cached config information.
//
// Storing this outside BasicHandle allows us create shallow copies of a Handle,
// which can be used e.g. when we need to modify config fields temporarily.
// Shallow copies are used within tests, so we can modify some config fields for a test
// temporarily when running tests in parallel, without running the risk that a test executing
// in parallel with other tests does not see a transient modified values not meant for it.
type basicHandleRuntimeState struct {
// these are used during runtime.
// At init time, they should have nothing in them.
rtidFns atomicRtidFnSlice
rtidFnsNoExt atomicRtidFnSlice
// Note: basicHandleRuntimeState is not comparable, due to these slices here (extHandle, intf2impls).
// If *[]T is used instead, this becomes comparable, at the cost of extra indirection.
// Thses slices are used all the time, so keep as slices (not pointers).
extHandle
intf2impls
mu sync.Mutex
jsonHandle bool
binaryHandle bool
// timeBuiltin is initialized from TimeNotBuiltin, and used internally.
// once initialized, it cannot be changed, as the function for encoding/decoding time.Time
// will have been cached and the TimeNotBuiltin value will not be consulted thereafter.
timeBuiltin bool
_ bool // padding
}
// BasicHandle encapsulates the common options and extension functions.
//
// Deprecated: DO NOT USE DIRECTLY. EXPORTED FOR GODOC BENEFIT. WILL BE REMOVED.
type BasicHandle struct {
// BasicHandle is always a part of a different type.
// It doesn't have to fit into it own cache lines.
// TypeInfos is used to get the type info for any type.
//
// If not configured, the default TypeInfos is used, which uses struct tag keys: codec, json
TypeInfos *TypeInfos
*basicHandleRuntimeState
// ---- cache line
DecodeOptions
// ---- cache line
EncodeOptions
RPCOptions
// TimeNotBuiltin configures whether time.Time should be treated as a builtin type.
//
// All Handlers should know how to encode/decode time.Time as part of the core
// format specification, or as a standard extension defined by the format.
//
// However, users can elect to handle time.Time as a custom extension, or via the
// standard library's encoding.Binary(M|Unm)arshaler or Text(M|Unm)arshaler interface.
// To elect this behavior, users can set TimeNotBuiltin=true.
//
// Note: Setting TimeNotBuiltin=true can be used to enable the legacy behavior
// (for Cbor and Msgpack), where time.Time was not a builtin supported type.
//
// Note: DO NOT CHANGE AFTER FIRST USE.
//
// Once a Handle has been initialized (used), do not modify this option. It will be ignored.
TimeNotBuiltin bool
// ExplicitRelease configures whether Release() is implicitly called after an encode or
// decode call.
//
// If you will hold onto an Encoder or Decoder for re-use, by calling Reset(...)
// on it or calling (Must)Encode repeatedly into a given []byte or io.Writer,
// then you do not want it to be implicitly closed after each Encode/Decode call.
// Doing so will unnecessarily return resources to the shared pool, only for you to
// grab them right after again to do another Encode/Decode call.
//
// Instead, you configure ExplicitRelease=true, and you explicitly call Release() when
// you are truly done.
//
// As an alternative, you can explicitly set a finalizer - so its resources
// are returned to the shared pool before it is garbage-collected. Do it as below:
// runtime.SetFinalizer(e, (*Encoder).Release)
// runtime.SetFinalizer(d, (*Decoder).Release)
//
// Deprecated: This is not longer used as pools are only used for long-lived objects
// which are shared across goroutines.
// Setting this value has no effect. It is maintained for backward compatibility.
ExplicitRelease bool
// ---- cache line
inited uint32 // holds if inited, and also handle flags (binary encoding, json handler, etc)
}
// initHandle does a one-time initialization of the handle.
// After this is run, do not modify the Handle, as some modifications are ignored
// e.g. extensions, registered interfaces, TimeNotBuiltIn, etc
func initHandle(hh Handle) {
x := hh.getBasicHandle()
// MARKER: We need to simulate once.Do, to ensure no data race within the block.
// Consequently, below would not work.
//
// if atomic.CompareAndSwapUint32(&x.inited, 0, 1) {
// x.be = hh.isBinary()
// x.js = hh.isJson
// x.n = hh.Name()[0]
// }
// simulate once.Do using our own stored flag and mutex as a CompareAndSwap
// is not sufficient, since a race condition can occur within init(Handle) function.
// init is made noinline, so that this function can be inlined by its caller.
if atomic.LoadUint32(&x.inited) == 0 {
x.initHandle(hh)
}
}
func (x *BasicHandle) basicInit() {
x.rtidFns.store(nil)
x.rtidFnsNoExt.store(nil)
x.timeBuiltin = !x.TimeNotBuiltin
}
func (x *BasicHandle) init() {}
func (x *BasicHandle) isInited() bool {
return atomic.LoadUint32(&x.inited) != 0
}
// clearInited: DANGEROUS - only use in testing, etc
func (x *BasicHandle) clearInited() {
atomic.StoreUint32(&x.inited, 0)
}
// TimeBuiltin returns whether time.Time OOTB support is used,
// based on the initial configuration of TimeNotBuiltin
func (x *basicHandleRuntimeState) TimeBuiltin() bool {
return x.timeBuiltin
}
func (x *basicHandleRuntimeState) isJs() bool {
return x.jsonHandle
}
func (x *basicHandleRuntimeState) isBe() bool {
return x.binaryHandle
}
func (x *basicHandleRuntimeState) setExt(rt reflect.Type, tag uint64, ext Ext) (err error) {
rk := rt.Kind()
for rk == reflect.Ptr {
rt = rt.Elem()
rk = rt.Kind()
}
if rt.PkgPath() == "" || rk == reflect.Interface { // || rk == reflect.Ptr {
return fmt.Errorf("codec.Handle.SetExt: Takes named type, not a pointer or interface: %v", rt)
}
rtid := rt2id(rt)
// handle all natively supported type appropriately, so they cannot have an extension.
// However, we do not return an error for these, as we do not document that.
// Instead, we silently treat as a no-op, and return.
switch rtid {
case rawTypId, rawExtTypId:
return
case timeTypId:
if x.timeBuiltin {
return
}
}
for i := range x.extHandle {
v := &x.extHandle[i]
if v.rtid == rtid {
v.tag, v.ext = tag, ext
return
}
}
rtidptr := rt2id(reflect.PtrTo(rt))
x.extHandle = append(x.extHandle, extTypeTagFn{rtid, rtidptr, rt, tag, ext})
return
}
// initHandle should be called only from codec.initHandle global function.
// make it uninlineable, as it is called at most once for each handle.
//
//go:noinline
func (x *BasicHandle) initHandle(hh Handle) {
handleInitMu.Lock()
defer handleInitMu.Unlock() // use defer, as halt may panic below
if x.inited == 0 {
if x.basicHandleRuntimeState == nil {
x.basicHandleRuntimeState = new(basicHandleRuntimeState)
}
x.jsonHandle = hh.isJson()
x.binaryHandle = hh.isBinary()
// ensure MapType and SliceType are of correct type
if x.MapType != nil && x.MapType.Kind() != reflect.Map {
halt.onerror(errMapTypeNotMapKind)
}
if x.SliceType != nil && x.SliceType.Kind() != reflect.Slice {
halt.onerror(errSliceTypeNotSliceKind)
}
x.basicInit()
hh.init()
atomic.StoreUint32(&x.inited, 1)
}
}
func (x *BasicHandle) getBasicHandle() *BasicHandle {
return x
}
func (x *BasicHandle) typeInfos() *TypeInfos {
if x.TypeInfos != nil {
return x.TypeInfos
}
return defTypeInfos
}
func (x *BasicHandle) getTypeInfo(rtid uintptr, rt reflect.Type) (pti *typeInfo) {
return x.typeInfos().get(rtid, rt)
}
func findRtidFn(s []codecRtidFn, rtid uintptr) (i uint, fn *codecFn) {
// binary search. adapted from sort/search.go.
// Note: we use goto (instead of for loop) so this can be inlined.
// h, i, j := 0, 0, len(s)
var h uint // var h, i uint
var j = uint(len(s))
LOOP:
if i < j {
h = (i + j) >> 1 // avoid overflow when computing h // h = i + (j-i)/2
if s[h].rtid < rtid {
i = h + 1
} else {
j = h
}
goto LOOP
}
if i < uint(len(s)) && s[i].rtid == rtid {
fn = s[i].fn
}
return
}
func (x *BasicHandle) fn(rt reflect.Type) (fn *codecFn) {
return x.fnVia(rt, x.typeInfos(), &x.rtidFns, x.CheckCircularRef, true)
}
func (x *BasicHandle) fnNoExt(rt reflect.Type) (fn *codecFn) {
return x.fnVia(rt, x.typeInfos(), &x.rtidFnsNoExt, x.CheckCircularRef, false)
}
func (x *basicHandleRuntimeState) fnVia(rt reflect.Type, tinfos *TypeInfos, fs *atomicRtidFnSlice, checkCircularRef, checkExt bool) (fn *codecFn) {
rtid := rt2id(rt)
sp := fs.load()
if sp != nil {
if _, fn = findRtidFn(sp, rtid); fn != nil {
return
}
}
fn = x.fnLoad(rt, rtid, tinfos, checkCircularRef, checkExt)
x.mu.Lock()
sp = fs.load()
// since this is an atomic load/store, we MUST use a different array each time,
// else we have a data race when a store is happening simultaneously with a findRtidFn call.
if sp == nil {
sp = []codecRtidFn{{rtid, fn}}
fs.store(sp)
} else {
idx, fn2 := findRtidFn(sp, rtid)
if fn2 == nil {
sp2 := make([]codecRtidFn, len(sp)+1)
copy(sp2[idx+1:], sp[idx:])
copy(sp2, sp[:idx])
sp2[idx] = codecRtidFn{rtid, fn}
fs.store(sp2)
}
}
x.mu.Unlock()
return
}
func fnloadFastpathUnderlying(ti *typeInfo) (f *fastpathE, u reflect.Type) {
var rtid uintptr
var idx int
rtid = rt2id(ti.fastpathUnderlying)
idx = fastpathAvIndex(rtid)
if idx == -1 {
return
}
f = &fastpathAv[idx]
if uint8(reflect.Array) == ti.kind {
u = reflectArrayOf(ti.rt.Len(), ti.elem)
} else {
u = f.rt
}
return
}
func (x *basicHandleRuntimeState) fnLoad(rt reflect.Type, rtid uintptr, tinfos *TypeInfos, checkCircularRef, checkExt bool) (fn *codecFn) {
fn = new(codecFn)
fi := &(fn.i)
ti := tinfos.get(rtid, rt)
fi.ti = ti
rk := reflect.Kind(ti.kind)
// anything can be an extension except the built-in ones: time, raw and rawext.
// ensure we check for these types, then if extension, before checking if
// it implementes one of the pre-declared interfaces.
fi.addrDf = true
// fi.addrEf = true
if rtid == timeTypId && x.timeBuiltin {
fn.fe = (*Encoder).kTime
fn.fd = (*Decoder).kTime
} else if rtid == rawTypId {
fn.fe = (*Encoder).raw
fn.fd = (*Decoder).raw
} else if rtid == rawExtTypId {
fn.fe = (*Encoder).rawExt
fn.fd = (*Decoder).rawExt
fi.addrD = true
fi.addrE = true
} else if xfFn := x.getExt(rtid, checkExt); xfFn != nil {
fi.xfTag, fi.xfFn = xfFn.tag, xfFn.ext
fn.fe = (*Encoder).ext
fn.fd = (*Decoder).ext
fi.addrD = true
if rk == reflect.Struct || rk == reflect.Array {
fi.addrE = true
}
} else if (ti.flagSelfer || ti.flagSelferPtr) &&
!(checkCircularRef && ti.flagSelferViaCodecgen && ti.kind == byte(reflect.Struct)) {
// do not use Selfer generated by codecgen if it is a struct and CheckCircularRef=true
fn.fe = (*Encoder).selferMarshal
fn.fd = (*Decoder).selferUnmarshal
fi.addrD = ti.flagSelferPtr
fi.addrE = ti.flagSelferPtr
} else if supportMarshalInterfaces && x.isBe() &&
(ti.flagBinaryMarshaler || ti.flagBinaryMarshalerPtr) &&
(ti.flagBinaryUnmarshaler || ti.flagBinaryUnmarshalerPtr) {
fn.fe = (*Encoder).binaryMarshal
fn.fd = (*Decoder).binaryUnmarshal
fi.addrD = ti.flagBinaryUnmarshalerPtr
fi.addrE = ti.flagBinaryMarshalerPtr
} else if supportMarshalInterfaces && !x.isBe() && x.isJs() &&
(ti.flagJsonMarshaler || ti.flagJsonMarshalerPtr) &&
(ti.flagJsonUnmarshaler || ti.flagJsonUnmarshalerPtr) {
//If JSON, we should check JSONMarshal before textMarshal
fn.fe = (*Encoder).jsonMarshal
fn.fd = (*Decoder).jsonUnmarshal
fi.addrD = ti.flagJsonUnmarshalerPtr
fi.addrE = ti.flagJsonMarshalerPtr
} else if supportMarshalInterfaces && !x.isBe() &&
(ti.flagTextMarshaler || ti.flagTextMarshalerPtr) &&
(ti.flagTextUnmarshaler || ti.flagTextUnmarshalerPtr) {
fn.fe = (*Encoder).textMarshal
fn.fd = (*Decoder).textUnmarshal
fi.addrD = ti.flagTextUnmarshalerPtr
fi.addrE = ti.flagTextMarshalerPtr
} else {
if fastpathEnabled && (rk == reflect.Map || rk == reflect.Slice || rk == reflect.Array) {
// by default (without using unsafe),
// if an array is not addressable, converting from an array to a slice
// requires an allocation (see helper_not_unsafe.go: func rvGetSlice4Array).
//
// (Non-addressable arrays mostly occur as keys/values from a map).
//
// However, fastpath functions are mostly for slices of numbers or strings,
// which are small by definition and thus allocation should be fast/cheap in time.
//
// Consequently, the value of doing this quick allocation to elide the overhead cost of
// non-optimized (not-unsafe) reflection is a fair price.
var rtid2 uintptr
if !ti.flagHasPkgPath { // un-named type (slice or mpa or array)
rtid2 = rtid
if rk == reflect.Array {
rtid2 = rt2id(ti.key) // ti.key for arrays = reflect.SliceOf(ti.elem)
}
if idx := fastpathAvIndex(rtid2); idx != -1 {
fn.fe = fastpathAv[idx].encfn
fn.fd = fastpathAv[idx].decfn
fi.addrD = true
fi.addrDf = false
if rk == reflect.Array {
fi.addrD = false // decode directly into array value (slice made from it)
}
}
} else { // named type (with underlying type of map or slice or array)
// try to use mapping for underlying type
xfe, xrt := fnloadFastpathUnderlying(ti)
if xfe != nil {
xfnf := xfe.encfn
xfnf2 := xfe.decfn
if rk == reflect.Array {
fi.addrD = false // decode directly into array value (slice made from it)
fn.fd = func(d *Decoder, xf *codecFnInfo, xrv reflect.Value) {
xfnf2(d, xf, rvConvert(xrv, xrt))
}
} else {
fi.addrD = true
fi.addrDf = false // meaning it can be an address(ptr) or a value
xptr2rt := reflect.PtrTo(xrt)
fn.fd = func(d *Decoder, xf *codecFnInfo, xrv reflect.Value) {
if xrv.Kind() == reflect.Ptr {
xfnf2(d, xf, rvConvert(xrv, xptr2rt))
} else {
xfnf2(d, xf, rvConvert(xrv, xrt))
}
}
}
fn.fe = func(e *Encoder, xf *codecFnInfo, xrv reflect.Value) {
xfnf(e, xf, rvConvert(xrv, xrt))
}
}
}
}
if fn.fe == nil && fn.fd == nil {
switch rk {
case reflect.Bool:
fn.fe = (*Encoder).kBool
fn.fd = (*Decoder).kBool
case reflect.String:
// Do not use different functions based on StringToRaw option, as that will statically
// set the function for a string type, and if the Handle is modified thereafter,
// behaviour is non-deterministic
// i.e. DO NOT DO:
// if x.StringToRaw {
// fn.fe = (*Encoder).kStringToRaw
// } else {
// fn.fe = (*Encoder).kStringEnc
// }
fn.fe = (*Encoder).kString
fn.fd = (*Decoder).kString
case reflect.Int:
fn.fd = (*Decoder).kInt
fn.fe = (*Encoder).kInt
case reflect.Int8:
fn.fe = (*Encoder).kInt8
fn.fd = (*Decoder).kInt8
case reflect.Int16:
fn.fe = (*Encoder).kInt16
fn.fd = (*Decoder).kInt16
case reflect.Int32:
fn.fe = (*Encoder).kInt32
fn.fd = (*Decoder).kInt32
case reflect.Int64:
fn.fe = (*Encoder).kInt64
fn.fd = (*Decoder).kInt64
case reflect.Uint:
fn.fd = (*Decoder).kUint
fn.fe = (*Encoder).kUint
case reflect.Uint8:
fn.fe = (*Encoder).kUint8
fn.fd = (*Decoder).kUint8
case reflect.Uint16:
fn.fe = (*Encoder).kUint16
fn.fd = (*Decoder).kUint16
case reflect.Uint32:
fn.fe = (*Encoder).kUint32
fn.fd = (*Decoder).kUint32
case reflect.Uint64:
fn.fe = (*Encoder).kUint64
fn.fd = (*Decoder).kUint64
case reflect.Uintptr:
fn.fe = (*Encoder).kUintptr
fn.fd = (*Decoder).kUintptr
case reflect.Float32:
fn.fe = (*Encoder).kFloat32
fn.fd = (*Decoder).kFloat32
case reflect.Float64:
fn.fe = (*Encoder).kFloat64
fn.fd = (*Decoder).kFloat64
case reflect.Complex64:
fn.fe = (*Encoder).kComplex64
fn.fd = (*Decoder).kComplex64
case reflect.Complex128:
fn.fe = (*Encoder).kComplex128
fn.fd = (*Decoder).kComplex128
case reflect.Chan:
fn.fe = (*Encoder).kChan
fn.fd = (*Decoder).kChan
case reflect.Slice:
fn.fe = (*Encoder).kSlice
fn.fd = (*Decoder).kSlice
case reflect.Array:
fi.addrD = false // decode directly into array value (slice made from it)
fn.fe = (*Encoder).kArray
fn.fd = (*Decoder).kArray
case reflect.Struct:
if ti.anyOmitEmpty ||
ti.flagMissingFielder ||
ti.flagMissingFielderPtr {
fn.fe = (*Encoder).kStruct
} else {
fn.fe = (*Encoder).kStructNoOmitempty
}
fn.fd = (*Decoder).kStruct
case reflect.Map:
fn.fe = (*Encoder).kMap
fn.fd = (*Decoder).kMap
case reflect.Interface:
// encode: reflect.Interface are handled already by preEncodeValue
fn.fd = (*Decoder).kInterface
fn.fe = (*Encoder).kErr
default:
// reflect.Ptr and reflect.Interface are handled already by preEncodeValue
fn.fe = (*Encoder).kErr
fn.fd = (*Decoder).kErr
}
}
}
return
}
// Handle defines a specific encoding format. It also stores any runtime state
// used during an Encoding or Decoding session e.g. stored state about Types, etc.
//
// Once a handle is configured, it can be shared across multiple Encoders and Decoders.
//
// Note that a Handle is NOT safe for concurrent modification.
//
// A Handle also should not be modified after it is configured and has
// been used at least once. This is because stored state may be out of sync with the
// new configuration, and a data race can occur when multiple goroutines access it.
// i.e. multiple Encoders or Decoders in different goroutines.
//
// Consequently, the typical usage model is that a Handle is pre-configured
// before first time use, and not modified while in use.
// Such a pre-configured Handle is safe for concurrent access.
type Handle interface {
Name() string
getBasicHandle() *BasicHandle
newEncDriver() encDriver
newDecDriver() decDriver
isBinary() bool
isJson() bool // json is special for now, so track it
// desc describes the current byte descriptor, or returns "unknown[XXX]" if not understood.
desc(bd byte) string
// init initializes the handle based on handle-specific info (beyond what is in BasicHandle)
init()
}
// Raw represents raw formatted bytes.
// We "blindly" store it during encode and retrieve the raw bytes during decode.
// Note: it is dangerous during encode, so we may gate the behaviour
// behind an Encode flag which must be explicitly set.
type Raw []byte
// RawExt represents raw unprocessed extension data.
// Some codecs will decode extension data as a *RawExt
// if there is no registered extension for the tag.
//
// Only one of Data or Value is nil.
// If Data is nil, then the content of the RawExt is in the Value.
type RawExt struct {
Tag uint64
// Data is the []byte which represents the raw ext. If nil, ext is exposed in Value.
// Data is used by codecs (e.g. binc, msgpack, simple) which do custom serialization of types
Data []byte
// Value represents the extension, if Data is nil.
// Value is used by codecs (e.g. cbor, json) which leverage the format to do
// custom serialization of the types.
Value interface{}
}
func (re *RawExt) setData(xbs []byte, zerocopy bool) {
if zerocopy {
re.Data = xbs
} else {
re.Data = append(re.Data[:0], xbs...)
}
}
// BytesExt handles custom (de)serialization of types to/from []byte.
// It is used by codecs (e.g. binc, msgpack, simple) which do custom serialization of the types.
type BytesExt interface {
// WriteExt converts a value to a []byte.
//
// Note: v is a pointer iff the registered extension type is a struct or array kind.
WriteExt(v interface{}) []byte
// ReadExt updates a value from a []byte.
//
// Note: dst is always a pointer kind to the registered extension type.
ReadExt(dst interface{}, src []byte)
}
// InterfaceExt handles custom (de)serialization of types to/from another interface{} value.
// The Encoder or Decoder will then handle the further (de)serialization of that known type.
//
// It is used by codecs (e.g. cbor, json) which use the format to do custom serialization of types.
type InterfaceExt interface {
// ConvertExt converts a value into a simpler interface for easy encoding
// e.g. convert time.Time to int64.
//
// Note: v is a pointer iff the registered extension type is a struct or array kind.
ConvertExt(v interface{}) interface{}
// UpdateExt updates a value from a simpler interface for easy decoding
// e.g. convert int64 to time.Time.
//
// Note: dst is always a pointer kind to the registered extension type.
UpdateExt(dst interface{}, src interface{})
}
// Ext handles custom (de)serialization of custom types / extensions.
type Ext interface {
BytesExt
InterfaceExt
}
// addExtWrapper is a wrapper implementation to support former AddExt exported method.
type addExtWrapper struct {
encFn func(reflect.Value) ([]byte, error)
decFn func(reflect.Value, []byte) error
}
func (x addExtWrapper) WriteExt(v interface{}) []byte {
bs, err := x.encFn(reflect.ValueOf(v))
halt.onerror(err)
return bs
}
func (x addExtWrapper) ReadExt(v interface{}, bs []byte) {
halt.onerror(x.decFn(reflect.ValueOf(v), bs))
}
func (x addExtWrapper) ConvertExt(v interface{}) interface{} {
return x.WriteExt(v)
}
func (x addExtWrapper) UpdateExt(dest interface{}, v interface{}) {
x.ReadExt(dest, v.([]byte))
}
type bytesExtFailer struct{}
func (bytesExtFailer) WriteExt(v interface{}) []byte {
halt.onerror(errExtFnWriteExtUnsupported)
return nil
}
func (bytesExtFailer) ReadExt(v interface{}, bs []byte) {
halt.onerror(errExtFnReadExtUnsupported)
}
type interfaceExtFailer struct{}
func (interfaceExtFailer) ConvertExt(v interface{}) interface{} {
halt.onerror(errExtFnConvertExtUnsupported)
return nil
}
func (interfaceExtFailer) UpdateExt(dest interface{}, v interface{}) {
halt.onerror(errExtFnUpdateExtUnsupported)
}
type bytesExtWrapper struct {
interfaceExtFailer
BytesExt
}
type interfaceExtWrapper struct {
bytesExtFailer
InterfaceExt
}
type extFailWrapper struct {
bytesExtFailer
interfaceExtFailer
}
type binaryEncodingType struct{}
func (binaryEncodingType) isBinary() bool { return true }
func (binaryEncodingType) isJson() bool { return false }
type textEncodingType struct{}
func (textEncodingType) isBinary() bool { return false }
func (textEncodingType) isJson() bool { return false }
type notJsonType struct{}
func (notJsonType) isJson() bool { return false }
// noBuiltInTypes is embedded into many types which do not support builtins
// e.g. msgpack, simple, cbor.
type noBuiltInTypes struct{}
func (noBuiltInTypes) EncodeBuiltin(rt uintptr, v interface{}) {}
func (noBuiltInTypes) DecodeBuiltin(rt uintptr, v interface{}) {}
// bigenHelper handles ByteOrder operations directly using
// arrays of bytes (not slice of bytes).
//
// Since byteorder operations are very common for encoding and decoding
// numbers, lengths, etc - it is imperative that this operation is as
// fast as possible. Removing indirection (pointer chasing) to look
// at up to 8 bytes helps a lot here.
//
// For times where it is expedient to use a slice, delegate to the
// bigenstd (equal to the binary.BigEndian value).
//
// retrofitted from stdlib: encoding/binary/BigEndian (ByteOrder)
type bigenHelper struct{}
func (z bigenHelper) PutUint16(v uint16) (b [2]byte) {
return [...]byte{
byte(v >> 8),
byte(v),
}
}
func (z bigenHelper) PutUint32(v uint32) (b [4]byte) {
return [...]byte{
byte(v >> 24),
byte(v >> 16),
byte(v >> 8),
byte(v),
}
}
func (z bigenHelper) PutUint64(v uint64) (b [8]byte) {
return [...]byte{
byte(v >> 56),
byte(v >> 48),
byte(v >> 40),
byte(v >> 32),
byte(v >> 24),
byte(v >> 16),
byte(v >> 8),
byte(v),
}
}
func (z bigenHelper) Uint16(b [2]byte) (v uint16) {
return uint16(b[1]) |
uint16(b[0])<<8
}
func (z bigenHelper) Uint32(b [4]byte) (v uint32) {
return uint32(b[3]) |
uint32(b[2])<<8 |
uint32(b[1])<<16 |
uint32(b[0])<<24
}
func (z bigenHelper) Uint64(b [8]byte) (v uint64) {
return uint64(b[7]) |
uint64(b[6])<<8 |
uint64(b[5])<<16 |
uint64(b[4])<<24 |
uint64(b[3])<<32 |
uint64(b[2])<<40 |
uint64(b[1])<<48 |
uint64(b[0])<<56
}
func (z bigenHelper) writeUint16(w *encWr, v uint16) {
x := z.PutUint16(v)
w.writen2(x[0], x[1])
}
func (z bigenHelper) writeUint32(w *encWr, v uint32) {
w.writen4(z.PutUint32(v))
}
func (z bigenHelper) writeUint64(w *encWr, v uint64) {
w.writen8(z.PutUint64(v))
}
type extTypeTagFn struct {
rtid uintptr
rtidptr uintptr
rt reflect.Type
tag uint64
ext Ext
}
type extHandle []extTypeTagFn
// AddExt registes an encode and decode function for a reflect.Type.
// To deregister an Ext, call AddExt with nil encfn and/or nil decfn.
//
// Deprecated: Use SetBytesExt or SetInterfaceExt on the Handle instead.
func (x *BasicHandle) AddExt(rt reflect.Type, tag byte,
encfn func(reflect.Value) ([]byte, error),
decfn func(reflect.Value, []byte) error) (err error) {
if encfn == nil || decfn == nil {
return x.SetExt(rt, uint64(tag), nil)
}
return x.SetExt(rt, uint64(tag), addExtWrapper{encfn, decfn})
}
// SetExt will set the extension for a tag and reflect.Type.
// Note that the type must be a named type, and specifically not a pointer or Interface.
// An error is returned if that is not honored.
// To Deregister an ext, call SetExt with nil Ext.
//
// Deprecated: Use SetBytesExt or SetInterfaceExt on the Handle instead.
func (x *BasicHandle) SetExt(rt reflect.Type, tag uint64, ext Ext) (err error) {
if x.isInited() {
return errHandleInited
}
if x.basicHandleRuntimeState == nil {
x.basicHandleRuntimeState = new(basicHandleRuntimeState)
}
return x.basicHandleRuntimeState.setExt(rt, tag, ext)
}
func (o extHandle) getExtForI(x interface{}) (v *extTypeTagFn) {
if len(o) > 0 {
v = o.getExt(i2rtid(x), true)
}
return
}
func (o extHandle) getExt(rtid uintptr, check bool) (v *extTypeTagFn) {
if !check {
return
}
for i := range o {
v = &o[i]
if v.rtid == rtid || v.rtidptr == rtid {
return
}
}
return nil
}
func (o extHandle) getExtForTag(tag uint64) (v *extTypeTagFn) {
for i := range o {
v = &o[i]
if v.tag == tag {
return
}
}
return nil
}
type intf2impl struct {
rtid uintptr // for intf
impl reflect.Type
}
type intf2impls []intf2impl
// Intf2Impl maps an interface to an implementing type.
// This allows us support infering the concrete type
// and populating it when passed an interface.
// e.g. var v io.Reader can be decoded as a bytes.Buffer, etc.
//
// Passing a nil impl will clear the mapping.
func (o *intf2impls) Intf2Impl(intf, impl reflect.Type) (err error) {
if impl != nil && !impl.Implements(intf) {
return fmt.Errorf("Intf2Impl: %v does not implement %v", impl, intf)
}
rtid := rt2id(intf)
o2 := *o
for i := range o2 {
v := &o2[i]
if v.rtid == rtid {
v.impl = impl
return
}
}
*o = append(o2, intf2impl{rtid, impl})
return
}
func (o intf2impls) intf2impl(rtid uintptr) (rv reflect.Value) {
for i := range o {
v := &o[i]
if v.rtid == rtid {
if v.impl == nil {
return
}
vkind := v.impl.Kind()
if vkind == reflect.Ptr {
return reflect.New(v.impl.Elem())
}
return rvZeroAddrK(v.impl, vkind)
}
}
return
}
// structFieldinfopathNode is a node in a tree, which allows us easily
// walk the anonymous path.
//
// In the typical case, the node is not embedded/anonymous, and thus the parent
// will be nil and this information becomes a value (not needing any indirection).
type structFieldInfoPathNode struct {
parent *structFieldInfoPathNode
offset uint16
index uint16
kind uint8
numderef uint8
// encNameAsciiAlphaNum and omitEmpty should be in structFieldInfo,
// but are kept here for tighter packaging.
encNameAsciiAlphaNum bool // the encName only contains ascii alphabet and numbers
omitEmpty bool
typ reflect.Type
}
// depth returns number of valid nodes in the hierachy
func (path *structFieldInfoPathNode) depth() (d int) {
TOP:
if path != nil {
d++
path = path.parent
goto TOP
}
return
}
// field returns the field of the struct.
func (path *structFieldInfoPathNode) field(v reflect.Value) (rv2 reflect.Value) {
if parent := path.parent; parent != nil {
v = parent.field(v)
for j, k := uint8(0), parent.numderef; j < k; j++ {
if rvIsNil(v) {
return
}
v = v.Elem()
}
}
return path.rvField(v)
}
// fieldAlloc returns the field of the struct.
// It allocates if a nil value was seen while searching.
func (path *structFieldInfoPathNode) fieldAlloc(v reflect.Value) (rv2 reflect.Value) {
if parent := path.parent; parent != nil {
v = parent.fieldAlloc(v)
for j, k := uint8(0), parent.numderef; j < k; j++ {
if rvIsNil(v) {
rvSetDirect(v, reflect.New(rvType(v).Elem()))
}
v = v.Elem()
}
}
return path.rvField(v)
}
type structFieldInfo struct {
encName string // encode name
// encNameHash uintptr
// fieldName string // currently unused
// encNameAsciiAlphaNum and omitEmpty should be here,
// but are stored in structFieldInfoPathNode for tighter packaging.
path structFieldInfoPathNode
}
func parseStructInfo(stag string) (toArray, omitEmpty bool, keytype valueType) {
keytype = valueTypeString // default
if stag == "" {
return
}
ss := strings.Split(stag, ",")
if len(ss) < 2 {
return
}
for _, s := range ss[1:] {
switch s {
case "omitempty":
omitEmpty = true
case "toarray":
toArray = true
case "int":
keytype = valueTypeInt
case "uint":
keytype = valueTypeUint
case "float":
keytype = valueTypeFloat
// case "bool":
// keytype = valueTypeBool
case "string":
keytype = valueTypeString
}
}
return
}
func (si *structFieldInfo) parseTag(stag string) {
if stag == "" {
return
}
for i, s := range strings.Split(stag, ",") {
if i == 0 {
if s != "" {
si.encName = s
}
} else {
switch s {
case "omitempty":
si.path.omitEmpty = true
}
}
}
}
type sfiSortedByEncName []*structFieldInfo
func (p sfiSortedByEncName) Len() int { return len(p) }
func (p sfiSortedByEncName) Swap(i, j int) { p[uint(i)], p[uint(j)] = p[uint(j)], p[uint(i)] }
func (p sfiSortedByEncName) Less(i, j int) bool { return p[uint(i)].encName < p[uint(j)].encName }
// typeInfo4Container holds information that is only available for
// containers like map, array, chan, slice.
type typeInfo4Container struct {
elem reflect.Type
// key is:
// - if map kind: map key
// - if array kind: sliceOf(elem)
// - if chan kind: sliceof(elem)
key reflect.Type
// fastpathUnderlying is underlying type of a named slice/map/array, as defined by go spec,
// that is used by fastpath where we defined fastpath functions for the underlying type.
//
// for a map, it's a map; for a slice or array, it's a slice; else its nil.
fastpathUnderlying reflect.Type
tikey *typeInfo
tielem *typeInfo
}
// typeInfo keeps static (non-changing readonly)information
// about each (non-ptr) type referenced in the encode/decode sequence.
//
// During an encode/decode sequence, we work as below:
// - If base is a built in type, en/decode base value
// - If base is registered as an extension, en/decode base value
// - If type is binary(M/Unm)arshaler, call Binary(M/Unm)arshal method
// - If type is text(M/Unm)arshaler, call Text(M/Unm)arshal method
// - Else decode appropriately based on the reflect.Kind
type typeInfo struct {
rt reflect.Type
ptr reflect.Type
// pkgpath string
rtid uintptr
numMeth uint16 // number of methods
kind uint8
chandir uint8
anyOmitEmpty bool // true if a struct, and any of the fields are tagged "omitempty"
toArray bool // whether this (struct) type should be encoded as an array
keyType valueType // if struct, how is the field name stored in a stream? default is string
mbs bool // base type (T or *T) is a MapBySlice
sfi4Name map[string]*structFieldInfo // map. used for finding sfi given a name
*typeInfo4Container
// ---- cpu cache line boundary?
size, keysize, elemsize uint32
keykind, elemkind uint8
flagHasPkgPath bool // Type.PackagePath != ""
flagComparable bool
flagCanTransient bool
flagMarshalInterface bool // does this have custom (un)marshal implementation?
flagSelferViaCodecgen bool
// custom implementation flags
flagIsZeroer bool
flagIsZeroerPtr bool
flagIsCodecEmptyer bool
flagIsCodecEmptyerPtr bool
flagBinaryMarshaler bool
flagBinaryMarshalerPtr bool
flagBinaryUnmarshaler bool
flagBinaryUnmarshalerPtr bool
flagTextMarshaler bool
flagTextMarshalerPtr bool
flagTextUnmarshaler bool
flagTextUnmarshalerPtr bool
flagJsonMarshaler bool
flagJsonMarshalerPtr bool
flagJsonUnmarshaler bool
flagJsonUnmarshalerPtr bool
flagSelfer bool
flagSelferPtr bool
flagMissingFielder bool
flagMissingFielderPtr bool
infoFieldOmitempty bool
sfi structFieldInfos
}
func (ti *typeInfo) siForEncName(name []byte) (si *structFieldInfo) {
return ti.sfi4Name[string(name)]
}
func (ti *typeInfo) resolve(x []structFieldInfo, ss map[string]uint16) (n int) {
n = len(x)
for i := range x {
ui := uint16(i)
xn := x[i].encName
j, ok := ss[xn]
if ok {
i2clear := ui // index to be cleared
if x[i].path.depth() < x[j].path.depth() { // this one is shallower
ss[xn] = ui
i2clear = j
}
if x[i2clear].encName != "" {
x[i2clear].encName = ""
n--
}
} else {
ss[xn] = ui
}
}
return
}
func (ti *typeInfo) init(x []structFieldInfo, n int) {
var anyOmitEmpty bool
// remove all the nils (non-ready)
m := make(map[string]*structFieldInfo, n)
w := make([]structFieldInfo, n)
y := make([]*structFieldInfo, n+n)
z := y[n:]
y = y[:n]
n = 0
for i := range x {
if x[i].encName == "" {
continue
}
if !anyOmitEmpty && x[i].path.omitEmpty {
anyOmitEmpty = true
}
w[n] = x[i]
y[n] = &w[n]
m[x[i].encName] = &w[n]
n++
}
if n != len(y) {
halt.errorf("failure reading struct %v - expecting %d of %d valid fields, got %d", ti.rt, len(y), len(x), n)
}
copy(z, y)
sort.Sort(sfiSortedByEncName(z))
ti.anyOmitEmpty = anyOmitEmpty
ti.sfi.load(y, z)
ti.sfi4Name = m
}
// Handling flagCanTransient
//
// We support transient optimization if the kind of the type is
// a number, bool, string, or slice (of number/bool).
// In addition, we also support if the kind is struct or array,
// and the type does not contain any pointers recursively).
//
// Noteworthy that all reference types (string, slice, func, map, ptr, interface, etc) have pointers.
//
// If using transient for a type with a pointer, there is the potential for data corruption
// when GC tries to follow a "transient" pointer which may become a non-pointer soon after.
//
func transientBitsetFlags() *bitset32 {
if transientValueHasStringSlice {
return &numBoolStrSliceBitset
}
return &numBoolBitset
}
func isCanTransient(t reflect.Type, k reflect.Kind) (v bool) {
var bs = transientBitsetFlags()
if bs.isset(byte(k)) {
v = true
} else if k == reflect.Slice {
elem := t.Elem()
v = numBoolBitset.isset(byte(elem.Kind()))
} else if k == reflect.Array {
elem := t.Elem()
v = isCanTransient(elem, elem.Kind())
} else if k == reflect.Struct {
v = true
for j, jlen := 0, t.NumField(); j < jlen; j++ {
f := t.Field(j)
if !isCanTransient(f.Type, f.Type.Kind()) {
v = false
return
}
}
} else {
v = false
}
return
}
func (ti *typeInfo) doSetFlagCanTransient() {
if transientSizeMax > 0 {
ti.flagCanTransient = ti.size <= transientSizeMax
} else {
ti.flagCanTransient = true
}
if ti.flagCanTransient {
if !transientBitsetFlags().isset(ti.kind) {
ti.flagCanTransient = isCanTransient(ti.rt, reflect.Kind(ti.kind))
}
}
}
type rtid2ti struct {
rtid uintptr
ti *typeInfo
}
// TypeInfos caches typeInfo for each type on first inspection.
//
// It is configured with a set of tag keys, which are used to get
// configuration for the type.
type TypeInfos struct {
infos atomicTypeInfoSlice
mu sync.Mutex
_ uint64 // padding (cache-aligned)
tags []string
_ uint64 // padding (cache-aligned)
}
// NewTypeInfos creates a TypeInfos given a set of struct tags keys.
//
// This allows users customize the struct tag keys which contain configuration
// of their types.
func NewTypeInfos(tags []string) *TypeInfos {
return &TypeInfos{tags: tags}
}
func (x *TypeInfos) structTag(t reflect.StructTag) (s string) {
// check for tags: codec, json, in that order.
// this allows seamless support for many configured structs.
for _, x := range x.tags {
s = t.Get(x)
if s != "" {
return s
}
}
return
}
func findTypeInfo(s []rtid2ti, rtid uintptr) (i uint, ti *typeInfo) {
// binary search. adapted from sort/search.go.
// Note: we use goto (instead of for loop) so this can be inlined.
var h uint
var j = uint(len(s))
LOOP:
if i < j {
h = (i + j) >> 1 // avoid overflow when computing h // h = i + (j-i)/2
if s[h].rtid < rtid {
i = h + 1
} else {
j = h
}
goto LOOP
}
if i < uint(len(s)) && s[i].rtid == rtid {
ti = s[i].ti
}
return
}
func (x *TypeInfos) get(rtid uintptr, rt reflect.Type) (pti *typeInfo) {
if pti = x.find(rtid); pti == nil {
pti = x.load(rt)
}
return
}
func (x *TypeInfos) find(rtid uintptr) (pti *typeInfo) {
sp := x.infos.load()
if sp != nil {
_, pti = findTypeInfo(sp, rtid)
}
return
}
func (x *TypeInfos) load(rt reflect.Type) (pti *typeInfo) {
rk := rt.Kind()
if rk == reflect.Ptr { // || (rk == reflect.Interface && rtid != intfTypId) {
halt.errorf("invalid kind passed to TypeInfos.get: %v - %v", rk, rt)
}
rtid := rt2id(rt)
// do not hold lock while computing this.
// it may lead to duplication, but that's ok.
ti := typeInfo{
rt: rt,
ptr: reflect.PtrTo(rt),
rtid: rtid,
kind: uint8(rk),
size: uint32(rt.Size()),
numMeth: uint16(rt.NumMethod()),
keyType: valueTypeString, // default it - so it's never 0
// pkgpath: rt.PkgPath(),
flagHasPkgPath: rt.PkgPath() != "",
}
// bset sets custom implementation flags
bset := func(when bool, b *bool) {
if when {
*b = true
}
}
var b1, b2 bool
b1, b2 = implIntf(rt, binaryMarshalerTyp)
bset(b1, &ti.flagBinaryMarshaler)
bset(b2, &ti.flagBinaryMarshalerPtr)
b1, b2 = implIntf(rt, binaryUnmarshalerTyp)
bset(b1, &ti.flagBinaryUnmarshaler)
bset(b2, &ti.flagBinaryUnmarshalerPtr)
b1, b2 = implIntf(rt, textMarshalerTyp)
bset(b1, &ti.flagTextMarshaler)
bset(b2, &ti.flagTextMarshalerPtr)
b1, b2 = implIntf(rt, textUnmarshalerTyp)
bset(b1, &ti.flagTextUnmarshaler)
bset(b2, &ti.flagTextUnmarshalerPtr)
b1, b2 = implIntf(rt, jsonMarshalerTyp)
bset(b1, &ti.flagJsonMarshaler)
bset(b2, &ti.flagJsonMarshalerPtr)
b1, b2 = implIntf(rt, jsonUnmarshalerTyp)
bset(b1, &ti.flagJsonUnmarshaler)
bset(b2, &ti.flagJsonUnmarshalerPtr)
b1, b2 = implIntf(rt, selferTyp)
bset(b1, &ti.flagSelfer)
bset(b2, &ti.flagSelferPtr)
b1, b2 = implIntf(rt, missingFielderTyp)
bset(b1, &ti.flagMissingFielder)
bset(b2, &ti.flagMissingFielderPtr)
b1, b2 = implIntf(rt, iszeroTyp)
bset(b1, &ti.flagIsZeroer)
bset(b2, &ti.flagIsZeroerPtr)
b1, b2 = implIntf(rt, isCodecEmptyerTyp)
bset(b1, &ti.flagIsCodecEmptyer)
bset(b2, &ti.flagIsCodecEmptyerPtr)
b1, b2 = implIntf(rt, isSelferViaCodecgenerTyp)
ti.flagSelferViaCodecgen = b1 || b2
ti.flagMarshalInterface = ti.flagSelfer || ti.flagSelferPtr ||
ti.flagSelferViaCodecgen ||
ti.flagBinaryMarshaler || ti.flagBinaryMarshalerPtr ||
ti.flagBinaryUnmarshaler || ti.flagBinaryUnmarshalerPtr ||
ti.flagTextMarshaler || ti.flagTextMarshalerPtr ||
ti.flagTextUnmarshaler || ti.flagTextUnmarshalerPtr ||
ti.flagJsonMarshaler || ti.flagJsonMarshalerPtr ||
ti.flagJsonUnmarshaler || ti.flagJsonUnmarshalerPtr
b1 = rt.Comparable()
// bset(b1, &ti.flagComparable)
ti.flagComparable = b1
ti.doSetFlagCanTransient()
var tt reflect.Type
switch rk {
case reflect.Struct:
var omitEmpty bool
if f, ok := rt.FieldByName(structInfoFieldName); ok {
ti.toArray, omitEmpty, ti.keyType = parseStructInfo(x.structTag(f.Tag))
ti.infoFieldOmitempty = omitEmpty
} else {
ti.keyType = valueTypeString
}
pp, pi := &pool4tiload, pool4tiload.Get()
pv := pi.(*typeInfoLoad)
pv.reset()
pv.etypes = append(pv.etypes, ti.rtid)
x.rget(rt, rtid, nil, pv, omitEmpty)
n := ti.resolve(pv.sfis, pv.sfiNames)
ti.init(pv.sfis, n)
pp.Put(pi)
case reflect.Map:
ti.typeInfo4Container = new(typeInfo4Container)
ti.elem = rt.Elem()
for tt = ti.elem; tt.Kind() == reflect.Ptr; tt = tt.Elem() {
}
ti.tielem = x.get(rt2id(tt), tt)
ti.elemkind = uint8(ti.elem.Kind())
ti.elemsize = uint32(ti.elem.Size())
ti.key = rt.Key()
for tt = ti.key; tt.Kind() == reflect.Ptr; tt = tt.Elem() {
}
ti.tikey = x.get(rt2id(tt), tt)
ti.keykind = uint8(ti.key.Kind())
ti.keysize = uint32(ti.key.Size())
if ti.flagHasPkgPath {
ti.fastpathUnderlying = reflect.MapOf(ti.key, ti.elem)
}
case reflect.Slice:
ti.typeInfo4Container = new(typeInfo4Container)
ti.mbs, b2 = implIntf(rt, mapBySliceTyp)
if !ti.mbs && b2 {
ti.mbs = b2
}
ti.elem = rt.Elem()
for tt = ti.elem; tt.Kind() == reflect.Ptr; tt = tt.Elem() {
}
ti.tielem = x.get(rt2id(tt), tt)
ti.elemkind = uint8(ti.elem.Kind())
ti.elemsize = uint32(ti.elem.Size())
if ti.flagHasPkgPath {
ti.fastpathUnderlying = reflect.SliceOf(ti.elem)
}
case reflect.Chan:
ti.typeInfo4Container = new(typeInfo4Container)
ti.elem = rt.Elem()
for tt = ti.elem; tt.Kind() == reflect.Ptr; tt = tt.Elem() {
}
ti.tielem = x.get(rt2id(tt), tt)
ti.elemkind = uint8(ti.elem.Kind())
ti.elemsize = uint32(ti.elem.Size())
ti.chandir = uint8(rt.ChanDir())
ti.key = reflect.SliceOf(ti.elem)
ti.keykind = uint8(reflect.Slice)
case reflect.Array:
ti.typeInfo4Container = new(typeInfo4Container)
ti.mbs, b2 = implIntf(rt, mapBySliceTyp)
if !ti.mbs && b2 {
ti.mbs = b2
}
ti.elem = rt.Elem()
ti.elemkind = uint8(ti.elem.Kind())
ti.elemsize = uint32(ti.elem.Size())
for tt = ti.elem; tt.Kind() == reflect.Ptr; tt = tt.Elem() {
}
ti.tielem = x.get(rt2id(tt), tt)
ti.key = reflect.SliceOf(ti.elem)
ti.keykind = uint8(reflect.Slice)
ti.keysize = uint32(ti.key.Size())
if ti.flagHasPkgPath {
ti.fastpathUnderlying = ti.key
}
// MARKER: reflect.Ptr cannot happen here, as we halt early if reflect.Ptr passed in
// case reflect.Ptr:
// ti.elem = rt.Elem()
// ti.elemkind = uint8(ti.elem.Kind())
// ti.elemsize = uint32(ti.elem.Size())
}
x.mu.Lock()
sp := x.infos.load()
// since this is an atomic load/store, we MUST use a different array each time,
// else we have a data race when a store is happening simultaneously with a findRtidFn call.
if sp == nil {
pti = &ti
sp = []rtid2ti{{rtid, pti}}
x.infos.store(sp)
} else {
var idx uint
idx, pti = findTypeInfo(sp, rtid)
if pti == nil {
pti = &ti
sp2 := make([]rtid2ti, len(sp)+1)
copy(sp2[idx+1:], sp[idx:])
copy(sp2, sp[:idx])
sp2[idx] = rtid2ti{rtid, pti}
x.infos.store(sp2)
}
}
x.mu.Unlock()
return
}
func (x *TypeInfos) rget(rt reflect.Type, rtid uintptr,
path *structFieldInfoPathNode, pv *typeInfoLoad, omitEmpty bool) {
// Read up fields and store how to access the value.
//
// It uses go's rules for message selectors,
// which say that the field with the shallowest depth is selected.
//
// Note: we consciously use slices, not a map, to simulate a set.
// Typically, types have < 16 fields,
// and iteration using equals is faster than maps there
flen := rt.NumField()
LOOP:
for j, jlen := uint16(0), uint16(flen); j < jlen; j++ {
f := rt.Field(int(j))
fkind := f.Type.Kind()
// skip if a func type, or is unexported, or structTag value == "-"
switch fkind {
case reflect.Func, reflect.UnsafePointer:
continue LOOP
}
isUnexported := f.PkgPath != ""
if isUnexported && !f.Anonymous {
continue
}
stag := x.structTag(f.Tag)
if stag == "-" {
continue
}
var si structFieldInfo
var numderef uint8 = 0
for xft := f.Type; xft.Kind() == reflect.Ptr; xft = xft.Elem() {
numderef++
}
var parsed bool
// if anonymous and no struct tag (or it's blank),
// and a struct (or pointer to struct), inline it.
if f.Anonymous && fkind != reflect.Interface {
// ^^ redundant but ok: per go spec, an embedded pointer type cannot be to an interface
ft := f.Type
isPtr := ft.Kind() == reflect.Ptr
for ft.Kind() == reflect.Ptr {
ft = ft.Elem()
}
isStruct := ft.Kind() == reflect.Struct
// Ignore embedded fields of unexported non-struct types.
// Also, from go1.10, ignore pointers to unexported struct types
// because unmarshal cannot assign a new struct to an unexported field.
// See https://golang.org/issue/21357
if (isUnexported && !isStruct) || (!allowSetUnexportedEmbeddedPtr && isUnexported && isPtr) {
continue
}
doInline := stag == ""
if !doInline {
si.parseTag(stag)
parsed = true
doInline = si.encName == "" // si.isZero()
}
if doInline && isStruct {
// if etypes contains this, don't call rget again (as fields are already seen here)
ftid := rt2id(ft)
// We cannot recurse forever, but we need to track other field depths.
// So - we break if we see a type twice (not the first time).
// This should be sufficient to handle an embedded type that refers to its
// owning type, which then refers to its embedded type.
processIt := true
numk := 0
for _, k := range pv.etypes {
if k == ftid {
numk++
if numk == rgetMaxRecursion {
processIt = false
break
}
}
}
if processIt {
pv.etypes = append(pv.etypes, ftid)
path2 := &structFieldInfoPathNode{
parent: path,
typ: f.Type,
offset: uint16(f.Offset),
index: j,
kind: uint8(fkind),
numderef: numderef,
}
x.rget(ft, ftid, path2, pv, omitEmpty)
}
continue
}
}
// after the anonymous dance: if an unexported field, skip
if isUnexported || f.Name == "" { // f.Name cannot be "", but defensively handle it
continue
}
si.path = structFieldInfoPathNode{
parent: path,
typ: f.Type,
offset: uint16(f.Offset),
index: j,
kind: uint8(fkind),
numderef: numderef,
// set asciiAlphaNum to true (default); checked and may be set to false below
encNameAsciiAlphaNum: true,
// note: omitEmpty might have been set in an earlier parseTag call, etc - so carry it forward
omitEmpty: si.path.omitEmpty,
}
if !parsed {
si.encName = f.Name
si.parseTag(stag)
parsed = true
} else if si.encName == "" {
si.encName = f.Name
}
// si.encNameHash = maxUintptr() // hashShortString(bytesView(si.encName))
if omitEmpty {
si.path.omitEmpty = true
}
for i := len(si.encName) - 1; i >= 0; i-- { // bounds-check elimination
if !asciiAlphaNumBitset.isset(si.encName[i]) {
si.path.encNameAsciiAlphaNum = false
break
}
}
pv.sfis = append(pv.sfis, si)
}
}
func implIntf(rt, iTyp reflect.Type) (base bool, indir bool) {
// return rt.Implements(iTyp), reflect.PtrTo(rt).Implements(iTyp)
// if I's method is defined on T (ie T implements I), then *T implements I.
// The converse is not true.
// Type.Implements can be expensive, as it does a simulataneous linear search across 2 lists
// with alphanumeric string comparisons.
// If we can avoid running one of these 2 calls, we should.
base = rt.Implements(iTyp)
if base {
indir = true
} else {
indir = reflect.PtrTo(rt).Implements(iTyp)
}
return
}
func isSliceBoundsError(s string) bool {
return strings.Contains(s, "index out of range") ||
strings.Contains(s, "slice bounds out of range")
}
func sprintf(format string, v ...interface{}) string {
return fmt.Sprintf(format, v...)
}
func panicValToErr(h errDecorator, v interface{}, err *error) {
if v == *err {
return
}
switch xerr := v.(type) {
case nil:
case runtime.Error:
d, dok := h.(*Decoder)
if dok && d.bytes && isSliceBoundsError(xerr.Error()) {
*err = io.EOF
} else {
h.wrapErr(xerr, err)
}
case error:
switch xerr {
case nil:
case io.EOF, io.ErrUnexpectedEOF, errEncoderNotInitialized, errDecoderNotInitialized:
// treat as special (bubble up)
*err = xerr
default:
h.wrapErr(xerr, err)
}
default:
// we don't expect this to happen (as this library always panics with an error)
h.wrapErr(fmt.Errorf("%v", v), err)
}
}
func usableByteSlice(bs []byte, slen int) (out []byte, changed bool) {
const maxCap = 1024 * 1024 * 64 // 64MB
const skipMaxCap = false // allow to test
if slen <= 0 {
return []byte{}, true
}
if slen <= cap(bs) {
return bs[:slen], false
}
// slen > cap(bs) ... handle memory overload appropriately
if skipMaxCap || slen <= maxCap {
return make([]byte, slen), true
}
return make([]byte, maxCap), true
}
func mapKeyFastKindFor(k reflect.Kind) mapKeyFastKind {
return mapKeyFastKindVals[k&31]
}
// ----
type codecFnInfo struct {
ti *typeInfo
xfFn Ext
xfTag uint64
addrD bool
addrDf bool // force: if addrD, then decode function MUST take a ptr
addrE bool
// addrEf bool // force: if addrE, then encode function MUST take a ptr
}
// codecFn encapsulates the captured variables and the encode function.
// This way, we only do some calculations one times, and pass to the
// code block that should be called (encapsulated in a function)
// instead of executing the checks every time.
type codecFn struct {
i codecFnInfo
fe func(*Encoder, *codecFnInfo, reflect.Value)
fd func(*Decoder, *codecFnInfo, reflect.Value)
// _ [1]uint64 // padding (cache-aligned)
}
type codecRtidFn struct {
rtid uintptr
fn *codecFn
}
func makeExt(ext interface{}) Ext {
switch t := ext.(type) {
case Ext:
return t
case BytesExt:
return &bytesExtWrapper{BytesExt: t}
case InterfaceExt:
return &interfaceExtWrapper{InterfaceExt: t}
}
return &extFailWrapper{}
}
func baseRV(v interface{}) (rv reflect.Value) {
// use reflect.ValueOf, not rv4i, as of go 1.16beta, rv4i was not inlineable
for rv = reflect.ValueOf(v); rv.Kind() == reflect.Ptr; rv = rv.Elem() {
}
return
}
// ----
// these "checkOverflow" functions must be inlinable, and not call anybody.
// Overflow means that the value cannot be represented without wrapping/overflow.
// Overflow=false does not mean that the value can be represented without losing precision
// (especially for floating point).
type checkOverflow struct{}
func (checkOverflow) Float32(v float64) (overflow bool) {
if v < 0 {
v = -v
}
return math.MaxFloat32 < v && v <= math.MaxFloat64
}
func (checkOverflow) Uint(v uint64, bitsize uint8) (overflow bool) {
if v != 0 && v != (v<<(64-bitsize))>>(64-bitsize) {
overflow = true
}
return
}
func (checkOverflow) Int(v int64, bitsize uint8) (overflow bool) {
if v != 0 && v != (v<<(64-bitsize))>>(64-bitsize) {
overflow = true
}
return
}
func (checkOverflow) Uint2Int(v uint64, neg bool) (overflow bool) {
return (neg && v > 1<<63) || (!neg && v >= 1<<63)
}
func (checkOverflow) SignedInt(v uint64) (overflow bool) {
//e.g. -127 to 128 for int8
// pos := (v >> 63) == 0
// ui2 := v & 0x7fffffffffffffff
// if pos {
// if ui2 > math.MaxInt64 {
// overflow = true
// }
// } else {
// if ui2 > math.MaxInt64-1 {
// overflow = true
// }
// }
// a signed integer has overflow if the sign (first) bit is 1 (negative)
// and the numbers after the sign bit is > maxint64 - 1
overflow = (v>>63) != 0 && v&0x7fffffffffffffff > math.MaxInt64-1
return
}
func (x checkOverflow) Float32V(v float64) float64 {
if x.Float32(v) {
halt.errorf("float32 overflow: %v", v)
}
return v
}
func (x checkOverflow) UintV(v uint64, bitsize uint8) uint64 {
if x.Uint(v, bitsize) {
halt.errorf("uint64 overflow: %v", v)
}
return v
}
func (x checkOverflow) IntV(v int64, bitsize uint8) int64 {
if x.Int(v, bitsize) {
halt.errorf("int64 overflow: %v", v)
}
return v
}
func (x checkOverflow) SignedIntV(v uint64) int64 {
if x.SignedInt(v) {
halt.errorf("uint64 to int64 overflow: %v", v)
}
return int64(v)
}
// ------------------ FLOATING POINT -----------------
func isNaN64(f float64) bool { return f != f }
func isWhitespaceChar(v byte) bool {
// these are in order of speed below ...
return v < 33
// return v < 33 && whitespaceCharBitset64.isset(v)
// return v < 33 && (v == ' ' || v == '\n' || v == '\t' || v == '\r')
// return v == ' ' || v == '\n' || v == '\t' || v == '\r'
// return whitespaceCharBitset.isset(v)
}
func isNumberChar(v byte) bool {
// these are in order of speed below ...
return numCharBitset.isset(v)
// return v < 64 && numCharNoExpBitset64.isset(v) || v == 'e' || v == 'E'
// return v > 42 && v < 102 && numCharWithExpBitset64.isset(v-42)
}
// -----------------------
type ioFlusher interface {
Flush() error
}
type ioBuffered interface {
Buffered() int
}
// -----------------------
type sfiRv struct {
v *structFieldInfo
r reflect.Value
}
// ------
// bitset types are better than [256]bool, because they permit the whole
// bitset array being on a single cache line and use less memory.
//
// Also, since pos is a byte (0-255), there's no bounds checks on indexing (cheap).
//
// We previously had bitset128 [16]byte, and bitset32 [4]byte, but those introduces
// bounds checking, so we discarded them, and everyone uses bitset256.
//
// given x > 0 and n > 0 and x is exactly 2^n, then pos/x === pos>>n AND pos%x === pos&(x-1).
// consequently, pos/32 === pos>>5, pos/16 === pos>>4, pos/8 === pos>>3, pos%8 == pos&7
//
// Note that using >> or & is faster than using / or %, as division is quite expensive if not optimized.
// MARKER:
// We noticed a little performance degradation when using bitset256 as [32]byte (or bitset32 as uint32).
// For example, json encoding went from 188K ns/op to 168K ns/op (~ 10% reduction).
// Consequently, we are using a [NNN]bool for bitsetNNN.
// To eliminate bounds-checking, we use x % v as that is guaranteed to be within bounds.
// ----
type bitset32 [32]bool
func (x *bitset32) set(pos byte) *bitset32 {
x[pos&31] = true // x[pos%32] = true
return x
}
func (x *bitset32) isset(pos byte) bool {
return x[pos&31] // x[pos%32]
}
type bitset256 [256]bool
func (x *bitset256) set(pos byte) *bitset256 {
x[pos] = true
return x
}
func (x *bitset256) isset(pos byte) bool {
return x[pos]
}
// ------------
type panicHdl struct{}
// errorv will panic if err is defined (not nil)
func (panicHdl) onerror(err error) {
if err != nil {
panic(err)
}
}
// errorf will always panic, using the parameters passed.
//
// Note: it is ok to pass in a stringView, as it will just pass it directly
// to a fmt.Sprintf call and not hold onto it.
//
//go:noinline
func (panicHdl) errorf(format string, params ...interface{}) {
if format == "" {
panic(errPanicUndefined)
}
if len(params) == 0 {
panic(errors.New(format))
}
panic(fmt.Errorf(format, params...))
}
// ----------------------------------------------------
type errDecorator interface {
wrapErr(in error, out *error)
}
type errDecoratorDef struct{}
func (errDecoratorDef) wrapErr(v error, e *error) { *e = v }
// ----------------------------------------------------
type mustHdl struct{}
func (mustHdl) String(s string, err error) string {
halt.onerror(err)
return s
}
func (mustHdl) Int(s int64, err error) int64 {
halt.onerror(err)
return s
}
func (mustHdl) Uint(s uint64, err error) uint64 {
halt.onerror(err)
return s
}
func (mustHdl) Float(s float64, err error) float64 {
halt.onerror(err)
return s
}
// -------------------
func freelistCapacity(length int) (capacity int) {
for capacity = 8; capacity <= length; capacity *= 2 {
}
return
}
// bytesFreelist is a list of byte buffers, sorted by cap.
//
// In anecdotal testing (running go test -tsd 1..6), we couldn't get
// the length ofthe list > 4 at any time. So we believe a linear search
// without bounds checking is sufficient.
//
// Typical usage model:
//
// peek may go together with put, iff pop=true. peek gets largest byte slice temporarily.
// check is used to switch a []byte if necessary
// get/put go together
//
// Given that folks may get a []byte, and then append to it a lot which may re-allocate
// a new []byte, we should try to return both (one received from blist and new one allocated).
//
// Typical usage model for get/put, when we don't know whether we may need more than requested
//
// v0 := blist.get()
// v1 := v0
// ... use v1 ...
// blist.put(v1)
// if byteSliceAddr(v0) != byteSliceAddr(v1) {
// blist.put(v0)
// }
type bytesFreelist [][]byte
// peek returns a slice of possibly non-zero'ed bytes, with len=0,
// and with the largest capacity from the list.
func (x *bytesFreelist) peek(length int, pop bool) (out []byte) {
if bytesFreeListNoCache {
return make([]byte, 0, freelistCapacity(length))
}
y := *x
if len(y) > 0 {
out = y[len(y)-1]
}
// start buf with a minimum of 64 bytes
const minLenBytes = 64
if length < minLenBytes {
length = minLenBytes
}
if cap(out) < length {
out = make([]byte, 0, freelistCapacity(length))
y = append(y, out)
*x = y
}
if pop && len(y) > 0 {
y = y[:len(y)-1]
*x = y
}
return
}
// get returns a slice of possibly non-zero'ed bytes, with len=0,
// and with cap >= length requested.
func (x *bytesFreelist) get(length int) (out []byte) {
if bytesFreeListNoCache {
return make([]byte, 0, freelistCapacity(length))
}
y := *x
// MARKER: do not use range, as range is not currently inlineable as of go 1.16-beta
// for i, v := range y {
for i := 0; i < len(y); i++ {
v := y[i]
if cap(v) >= length {
// *x = append(y[:i], y[i+1:]...)
copy(y[i:], y[i+1:])
*x = y[:len(y)-1]
return v
}
}
return make([]byte, 0, freelistCapacity(length))
}
func (x *bytesFreelist) put(v []byte) {
if bytesFreeListNoCache || cap(v) == 0 {
return
}
if len(v) != 0 {
v = v[:0]
}
// append the new value, then try to put it in a better position
y := append(*x, v)
*x = y
// MARKER: do not use range, as range is not currently inlineable as of go 1.16-beta
// for i, z := range y[:len(y)-1] {
for i := 0; i < len(y)-1; i++ {
z := y[i]
if cap(z) > cap(v) {
copy(y[i+1:], y[i:])
y[i] = v
return
}
}
}
func (x *bytesFreelist) check(v []byte, length int) (out []byte) {
// ensure inlineable, by moving slow-path out to its own function
if cap(v) >= length {
return v[:0]
}
return x.checkPutGet(v, length)
}
func (x *bytesFreelist) checkPutGet(v []byte, length int) []byte {
// checkPutGet broken out into its own function, so check is inlineable in general case
const useSeparateCalls = false
if useSeparateCalls {
x.put(v)
return x.get(length)
}
if bytesFreeListNoCache {
return make([]byte, 0, freelistCapacity(length))
}
// assume cap(v) < length, so put must happen before get
y := *x
var put = cap(v) == 0 // if empty, consider it already put
if !put {
y = append(y, v)
*x = y
}
for i := 0; i < len(y); i++ {
z := y[i]
if put {
if cap(z) >= length {
copy(y[i:], y[i+1:])
y = y[:len(y)-1]
*x = y
return z
}
} else {
if cap(z) > cap(v) {
copy(y[i+1:], y[i:])
y[i] = v
put = true
}
}
}
return make([]byte, 0, freelistCapacity(length))
}
// -------------------------
// sfiRvFreelist is used by Encoder for encoding structs,
// where we have to gather the fields first and then
// analyze them for omitEmpty, before knowing the length of the array/map to encode.
//
// Typically, the length here will depend on the number of cycles e.g.
// if type T1 has reference to T1, or T1 has reference to type T2 which has reference to T1.
//
// In the general case, the length of this list at most times is 1,
// so linear search is fine.
type sfiRvFreelist [][]sfiRv
func (x *sfiRvFreelist) get(length int) (out []sfiRv) {
y := *x
// MARKER: do not use range, as range is not currently inlineable as of go 1.16-beta
// for i, v := range y {
for i := 0; i < len(y); i++ {
v := y[i]
if cap(v) >= length {
// *x = append(y[:i], y[i+1:]...)
copy(y[i:], y[i+1:])
*x = y[:len(y)-1]
return v
}
}
return make([]sfiRv, 0, freelistCapacity(length))
}
func (x *sfiRvFreelist) put(v []sfiRv) {
if len(v) != 0 {
v = v[:0]
}
// append the new value, then try to put it in a better position
y := append(*x, v)
*x = y
// MARKER: do not use range, as range is not currently inlineable as of go 1.16-beta
// for i, z := range y[:len(y)-1] {
for i := 0; i < len(y)-1; i++ {
z := y[i]
if cap(z) > cap(v) {
copy(y[i+1:], y[i:])
y[i] = v
return
}
}
}
// ---- multiple interner implementations ----
// Hard to tell which is most performant:
// - use a map[string]string - worst perf, no collisions, and unlimited entries
// - use a linear search with move to front heuristics - no collisions, and maxed at 64 entries
// - use a computationally-intensive hash - best performance, some collisions, maxed at 64 entries
const (
internMaxStrLen = 16 // if more than 16 bytes, faster to copy than compare bytes
internCap = 64 * 2 // 64 uses 1K bytes RAM, so 128 (anecdotal sweet spot) uses 2K bytes
)
type internerMap map[string]string
func (x *internerMap) init() {
*x = make(map[string]string, internCap)
}
func (x internerMap) string(v []byte) (s string) {
s, ok := x[string(v)] // no allocation here, per go implementation
if !ok {
s = string(v) // new allocation here
x[s] = s
}
return
}
|