1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
|
// Copyright (c) 2012-2020 Ugorji Nwoke. All rights reserved.
// Use of this source code is governed by a MIT license found in the LICENSE file.
//go:build !safe && !codec.safe && !appengine && go1.9
// +build !safe,!codec.safe,!appengine,go1.9
// minimum of go 1.9 is needed, as that is the minimum for all features and linked functions we need
// - typedmemclr was introduced in go 1.8
// - mapassign_fastXXX was introduced in go 1.9
// etc
package codec
import (
"reflect"
_ "runtime" // needed for go linkname(s)
"sync/atomic"
"time"
"unsafe"
)
// This file has unsafe variants of some helper functions.
// MARKER: See helper_unsafe.go for the usage documentation.
// There are a number of helper_*unsafe*.go files.
//
// - helper_unsafe
// unsafe variants of dependent functions
// - helper_unsafe_compiler_gc (gc)
// unsafe variants of dependent functions which cannot be shared with gollvm or gccgo
// - helper_not_unsafe_not_gc (gccgo/gollvm or safe)
// safe variants of functions in helper_unsafe_compiler_gc
// - helper_not_unsafe (safe)
// safe variants of functions in helper_unsafe
// - helper_unsafe_compiler_not_gc (gccgo, gollvm)
// unsafe variants of functions/variables which non-standard compilers need
//
// This way, we can judiciously use build tags to include the right set of files
// for any compiler, and make it run optimally in unsafe mode.
//
// As of March 2021, we cannot differentiate whether running with gccgo or gollvm
// using a build constraint, as both satisfy 'gccgo' build tag.
// Consequently, we must use the lowest common denominator to support both.
// For reflect.Value code, we decided to do the following:
// - if we know the kind, we can elide conditional checks for
// - SetXXX (Int, Uint, String, Bool, etc)
// - SetLen
//
// We can also optimize
// - IsNil
// MARKER: Some functions here will not be hit during code coverage runs due to optimizations, e.g.
// - rvCopySlice: decode calls it if rvGrowSlice didn't set the new slice into the pointer to the orig slice.
// however, helper_unsafe sets it, so there's no need to call rvCopySlice later
// - rvSlice: same as above
// - rvGetArray4Bytes: only called within kArray for []byte, but that is now handled
// within the fast-path directly
const safeMode = false
// helperUnsafeDirectAssignMapEntry says that we should not copy the pointer in the map
// to another value during mapRange/iteration and mapGet calls, but directly assign it.
//
// The only callers of mapRange/iteration is encode.
// Here, we just walk through the values and encode them
//
// The only caller of mapGet is decode.
// Here, it does a Get if the underlying value is a pointer, and decodes into that.
//
// For both users, we are very careful NOT to modify or keep the pointers around.
// Consequently, it is ok for take advantage of the performance that the map is not modified
// during an iteration and we can just "peek" at the internal value" in the map and use it.
const helperUnsafeDirectAssignMapEntry = true
// MARKER: keep in sync with GO_ROOT/src/reflect/value.go
const (
unsafeFlagStickyRO = 1 << 5
unsafeFlagEmbedRO = 1 << 6
unsafeFlagIndir = 1 << 7
unsafeFlagAddr = 1 << 8
unsafeFlagRO = unsafeFlagStickyRO | unsafeFlagEmbedRO
// unsafeFlagKindMask = (1 << 5) - 1 // 5 bits for 27 kinds (up to 31)
// unsafeTypeKindDirectIface = 1 << 5
)
// transientSizeMax below is used in TransientAddr as the backing storage.
//
// Must be >= 16 as the maximum size is a complex128 (or string on 64-bit machines).
const transientSizeMax = 64
// should struct/array support internal strings and slices?
const transientValueHasStringSlice = false
type unsafeString struct {
Data unsafe.Pointer
Len int
}
type unsafeSlice struct {
Data unsafe.Pointer
Len int
Cap int
}
type unsafeIntf struct {
typ unsafe.Pointer
ptr unsafe.Pointer
}
type unsafeReflectValue struct {
unsafeIntf
flag uintptr
}
// keep in sync with stdlib runtime/type.go
type unsafeRuntimeType struct {
size uintptr
// ... many other fields here
}
// unsafeZeroAddr and unsafeZeroSlice points to a read-only block of memory
// used for setting a zero value for most types or creating a read-only
// zero value for a given type.
var (
unsafeZeroAddr = unsafe.Pointer(&unsafeZeroArr[0])
unsafeZeroSlice = unsafeSlice{unsafeZeroAddr, 0, 0}
)
// We use a scratch memory and an unsafeSlice for transient values:
//
// unsafeSlice is used for standalone strings and slices (outside an array or struct).
// scratch memory is used for other kinds, based on contract below:
// - numbers, bool are always transient
// - structs and arrays are transient iff they have no pointers i.e.
// no string, slice, chan, func, interface, map, etc only numbers and bools.
// - slices and strings are transient (using the unsafeSlice)
type unsafePerTypeElem struct {
arr [transientSizeMax]byte // for bool, number, struct, array kinds
slice unsafeSlice // for string and slice kinds
}
func (x *unsafePerTypeElem) addrFor(k reflect.Kind) unsafe.Pointer {
if k == reflect.String || k == reflect.Slice {
x.slice = unsafeSlice{} // memclr
return unsafe.Pointer(&x.slice)
}
x.arr = [transientSizeMax]byte{} // memclr
return unsafe.Pointer(&x.arr)
}
type perType struct {
elems [2]unsafePerTypeElem
}
type decPerType struct {
perType
}
type encPerType struct{}
// TransientAddrK is used for getting a *transient* value to be decoded into,
// which will right away be used for something else.
//
// See notes in helper.go about "Transient values during decoding"
func (x *perType) TransientAddrK(t reflect.Type, k reflect.Kind) reflect.Value {
return rvZeroAddrTransientAnyK(t, k, x.elems[0].addrFor(k))
}
func (x *perType) TransientAddr2K(t reflect.Type, k reflect.Kind) reflect.Value {
return rvZeroAddrTransientAnyK(t, k, x.elems[1].addrFor(k))
}
func (encPerType) AddressableRO(v reflect.Value) reflect.Value {
return rvAddressableReadonly(v)
}
// stringView returns a view of the []byte as a string.
// In unsafe mode, it doesn't incur allocation and copying caused by conversion.
// In regular safe mode, it is an allocation and copy.
func stringView(v []byte) string {
return *(*string)(unsafe.Pointer(&v))
}
// bytesView returns a view of the string as a []byte.
// In unsafe mode, it doesn't incur allocation and copying caused by conversion.
// In regular safe mode, it is an allocation and copy.
func bytesView(v string) (b []byte) {
sx := (*unsafeString)(unsafe.Pointer(&v))
bx := (*unsafeSlice)(unsafe.Pointer(&b))
bx.Data, bx.Len, bx.Cap = sx.Data, sx.Len, sx.Len
return
}
func byteSliceSameData(v1 []byte, v2 []byte) bool {
return (*unsafeSlice)(unsafe.Pointer(&v1)).Data == (*unsafeSlice)(unsafe.Pointer(&v2)).Data
}
// MARKER: okBytesN functions will copy N bytes into the top slots of the return array.
// These functions expect that the bounds are valid, and have been checked before this is called.
// copy(...) does a number of checks which are unnecessary in this situation when in bounds.
func okBytes3(b []byte) (v [4]byte) {
*(*[3]byte)(unsafe.Pointer(&v[1])) = *((*[3]byte)(((*unsafeSlice)(unsafe.Pointer(&b))).Data))
return
}
func okBytes4(b []byte) [4]byte {
return *((*[4]byte)(((*unsafeSlice)(unsafe.Pointer(&b))).Data))
}
func okBytes8(b []byte) [8]byte {
return *((*[8]byte)(((*unsafeSlice)(unsafe.Pointer(&b))).Data))
}
// isNil says whether the value v is nil.
// This applies to references like map/ptr/unsafepointer/chan/func,
// and non-reference values like interface/slice.
func isNil(v interface{}) (rv reflect.Value, isnil bool) {
var ui = (*unsafeIntf)(unsafe.Pointer(&v))
isnil = ui.ptr == nil
if !isnil {
rv, isnil = unsafeIsNilIntfOrSlice(ui, v)
}
return
}
func unsafeIsNilIntfOrSlice(ui *unsafeIntf, v interface{}) (rv reflect.Value, isnil bool) {
rv = reflect.ValueOf(v) // reflect.ValueOf is currently not inline'able - so call it directly
tk := rv.Kind()
isnil = (tk == reflect.Interface || tk == reflect.Slice) && *(*unsafe.Pointer)(ui.ptr) == nil
return
}
// return the pointer for a reference (map/chan/func/pointer/unsafe.Pointer).
// true references (map, func, chan, ptr - NOT slice) may be double-referenced? as flagIndir
//
// Assumes that v is a reference (map/func/chan/ptr/func)
func rvRefPtr(v *unsafeReflectValue) unsafe.Pointer {
if v.flag&unsafeFlagIndir != 0 {
return *(*unsafe.Pointer)(v.ptr)
}
return v.ptr
}
func eq4i(i0, i1 interface{}) bool {
v0 := (*unsafeIntf)(unsafe.Pointer(&i0))
v1 := (*unsafeIntf)(unsafe.Pointer(&i1))
return v0.typ == v1.typ && v0.ptr == v1.ptr
}
func rv4iptr(i interface{}) (v reflect.Value) {
// Main advantage here is that it is inlined, nothing escapes to heap, i is never nil
uv := (*unsafeReflectValue)(unsafe.Pointer(&v))
uv.unsafeIntf = *(*unsafeIntf)(unsafe.Pointer(&i))
uv.flag = uintptr(rkindPtr)
return
}
func rv4istr(i interface{}) (v reflect.Value) {
// Main advantage here is that it is inlined, nothing escapes to heap, i is never nil
uv := (*unsafeReflectValue)(unsafe.Pointer(&v))
uv.unsafeIntf = *(*unsafeIntf)(unsafe.Pointer(&i))
uv.flag = uintptr(rkindString) | unsafeFlagIndir
return
}
func rv2i(rv reflect.Value) (i interface{}) {
// We tap into implememtation details from
// the source go stdlib reflect/value.go, and trims the implementation.
//
// e.g.
// - a map/ptr is a reference, thus flagIndir is not set on it
// - an int/slice is not a reference, thus flagIndir is set on it
urv := (*unsafeReflectValue)(unsafe.Pointer(&rv))
if refBitset.isset(byte(rv.Kind())) && urv.flag&unsafeFlagIndir != 0 {
urv.ptr = *(*unsafe.Pointer)(urv.ptr)
}
return *(*interface{})(unsafe.Pointer(&urv.unsafeIntf))
}
func rvAddr(rv reflect.Value, ptrType reflect.Type) reflect.Value {
urv := (*unsafeReflectValue)(unsafe.Pointer(&rv))
urv.flag = (urv.flag & unsafeFlagRO) | uintptr(reflect.Ptr)
urv.typ = ((*unsafeIntf)(unsafe.Pointer(&ptrType))).ptr
return rv
}
func rvIsNil(rv reflect.Value) bool {
urv := (*unsafeReflectValue)(unsafe.Pointer(&rv))
if urv.flag&unsafeFlagIndir != 0 {
return *(*unsafe.Pointer)(urv.ptr) == nil
}
return urv.ptr == nil
}
func rvSetSliceLen(rv reflect.Value, length int) {
urv := (*unsafeReflectValue)(unsafe.Pointer(&rv))
(*unsafeString)(urv.ptr).Len = length
}
func rvZeroAddrK(t reflect.Type, k reflect.Kind) (rv reflect.Value) {
urv := (*unsafeReflectValue)(unsafe.Pointer(&rv))
urv.typ = ((*unsafeIntf)(unsafe.Pointer(&t))).ptr
urv.flag = uintptr(k) | unsafeFlagIndir | unsafeFlagAddr
urv.ptr = unsafeNew(urv.typ)
return
}
func rvZeroAddrTransientAnyK(t reflect.Type, k reflect.Kind, addr unsafe.Pointer) (rv reflect.Value) {
urv := (*unsafeReflectValue)(unsafe.Pointer(&rv))
urv.typ = ((*unsafeIntf)(unsafe.Pointer(&t))).ptr
urv.flag = uintptr(k) | unsafeFlagIndir | unsafeFlagAddr
urv.ptr = addr
return
}
func rvZeroK(t reflect.Type, k reflect.Kind) (rv reflect.Value) {
urv := (*unsafeReflectValue)(unsafe.Pointer(&rv))
urv.typ = ((*unsafeIntf)(unsafe.Pointer(&t))).ptr
if refBitset.isset(byte(k)) {
urv.flag = uintptr(k)
} else if rtsize2(urv.typ) <= uintptr(len(unsafeZeroArr)) {
urv.flag = uintptr(k) | unsafeFlagIndir
urv.ptr = unsafeZeroAddr
} else { // meaning struct or array
urv.flag = uintptr(k) | unsafeFlagIndir | unsafeFlagAddr
urv.ptr = unsafeNew(urv.typ)
}
return
}
// rvConvert will convert a value to a different type directly,
// ensuring that they still point to the same underlying value.
func rvConvert(v reflect.Value, t reflect.Type) reflect.Value {
uv := (*unsafeReflectValue)(unsafe.Pointer(&v))
uv.typ = ((*unsafeIntf)(unsafe.Pointer(&t))).ptr
return v
}
// rvAddressableReadonly returns an addressable reflect.Value.
//
// Use it within encode calls, when you just want to "read" the underlying ptr
// without modifying the value.
//
// Note that it cannot be used for r/w use, as those non-addressable values
// may have been stored in read-only memory, and trying to write the pointer
// may cause a segfault.
func rvAddressableReadonly(v reflect.Value) reflect.Value {
// hack to make an addressable value out of a non-addressable one.
// Assume folks calling it are passing a value that can be addressable, but isn't.
// This assumes that the flagIndir is already set on it.
// so we just set the flagAddr bit on the flag (and do not set the flagIndir).
uv := (*unsafeReflectValue)(unsafe.Pointer(&v))
uv.flag = uv.flag | unsafeFlagAddr // | unsafeFlagIndir
return v
}
func rtsize2(rt unsafe.Pointer) uintptr {
return ((*unsafeRuntimeType)(rt)).size
}
func rt2id(rt reflect.Type) uintptr {
return uintptr(((*unsafeIntf)(unsafe.Pointer(&rt))).ptr)
}
func i2rtid(i interface{}) uintptr {
return uintptr(((*unsafeIntf)(unsafe.Pointer(&i))).typ)
}
// --------------------------
func unsafeCmpZero(ptr unsafe.Pointer, size int) bool {
// verified that size is always within right range, so no chance of OOM
var s1 = unsafeString{ptr, size}
var s2 = unsafeString{unsafeZeroAddr, size}
if size > len(unsafeZeroArr) {
arr := make([]byte, size)
s2.Data = unsafe.Pointer(&arr[0])
}
return *(*string)(unsafe.Pointer(&s1)) == *(*string)(unsafe.Pointer(&s2)) // memcmp
}
func isEmptyValue(v reflect.Value, tinfos *TypeInfos, recursive bool) bool {
urv := (*unsafeReflectValue)(unsafe.Pointer(&v))
if urv.flag == 0 {
return true
}
if recursive {
return isEmptyValueFallbackRecur(urv, v, tinfos)
}
return unsafeCmpZero(urv.ptr, int(rtsize2(urv.typ)))
}
func isEmptyValueFallbackRecur(urv *unsafeReflectValue, v reflect.Value, tinfos *TypeInfos) bool {
const recursive = true
switch v.Kind() {
case reflect.Invalid:
return true
case reflect.String:
return (*unsafeString)(urv.ptr).Len == 0
case reflect.Slice:
return (*unsafeSlice)(urv.ptr).Len == 0
case reflect.Bool:
return !*(*bool)(urv.ptr)
case reflect.Int:
return *(*int)(urv.ptr) == 0
case reflect.Int8:
return *(*int8)(urv.ptr) == 0
case reflect.Int16:
return *(*int16)(urv.ptr) == 0
case reflect.Int32:
return *(*int32)(urv.ptr) == 0
case reflect.Int64:
return *(*int64)(urv.ptr) == 0
case reflect.Uint:
return *(*uint)(urv.ptr) == 0
case reflect.Uint8:
return *(*uint8)(urv.ptr) == 0
case reflect.Uint16:
return *(*uint16)(urv.ptr) == 0
case reflect.Uint32:
return *(*uint32)(urv.ptr) == 0
case reflect.Uint64:
return *(*uint64)(urv.ptr) == 0
case reflect.Uintptr:
return *(*uintptr)(urv.ptr) == 0
case reflect.Float32:
return *(*float32)(urv.ptr) == 0
case reflect.Float64:
return *(*float64)(urv.ptr) == 0
case reflect.Complex64:
return unsafeCmpZero(urv.ptr, 8)
case reflect.Complex128:
return unsafeCmpZero(urv.ptr, 16)
case reflect.Struct:
// return isEmptyStruct(v, tinfos, recursive)
if tinfos == nil {
tinfos = defTypeInfos
}
ti := tinfos.find(uintptr(urv.typ))
if ti == nil {
ti = tinfos.load(rvType(v))
}
return unsafeCmpZero(urv.ptr, int(ti.size))
case reflect.Interface, reflect.Ptr:
// isnil := urv.ptr == nil // (not sufficient, as a pointer value encodes the type)
isnil := urv.ptr == nil || *(*unsafe.Pointer)(urv.ptr) == nil
if recursive && !isnil {
return isEmptyValue(v.Elem(), tinfos, recursive)
}
return isnil
case reflect.UnsafePointer:
return urv.ptr == nil || *(*unsafe.Pointer)(urv.ptr) == nil
case reflect.Chan:
return urv.ptr == nil || len_chan(rvRefPtr(urv)) == 0
case reflect.Map:
return urv.ptr == nil || len_map(rvRefPtr(urv)) == 0
case reflect.Array:
return v.Len() == 0 ||
urv.ptr == nil ||
urv.typ == nil ||
rtsize2(urv.typ) == 0 ||
unsafeCmpZero(urv.ptr, int(rtsize2(urv.typ)))
}
return false
}
// --------------------------
type structFieldInfos struct {
c unsafe.Pointer // source
s unsafe.Pointer // sorted
length int
}
func (x *structFieldInfos) load(source, sorted []*structFieldInfo) {
s := (*unsafeSlice)(unsafe.Pointer(&sorted))
x.s = s.Data
x.length = s.Len
s = (*unsafeSlice)(unsafe.Pointer(&source))
x.c = s.Data
}
func (x *structFieldInfos) sorted() (v []*structFieldInfo) {
*(*unsafeSlice)(unsafe.Pointer(&v)) = unsafeSlice{x.s, x.length, x.length}
// s := (*unsafeSlice)(unsafe.Pointer(&v))
// s.Data = x.sorted0
// s.Len = x.length
// s.Cap = s.Len
return
}
func (x *structFieldInfos) source() (v []*structFieldInfo) {
*(*unsafeSlice)(unsafe.Pointer(&v)) = unsafeSlice{x.c, x.length, x.length}
return
}
// atomicXXX is expected to be 2 words (for symmetry with atomic.Value)
//
// Note that we do not atomically load/store length and data pointer separately,
// as this could lead to some races. Instead, we atomically load/store cappedSlice.
//
// Note: with atomic.(Load|Store)Pointer, we MUST work with an unsafe.Pointer directly.
// ----------------------
type atomicTypeInfoSlice struct {
v unsafe.Pointer // *[]rtid2ti
}
func (x *atomicTypeInfoSlice) load() (s []rtid2ti) {
x2 := atomic.LoadPointer(&x.v)
if x2 != nil {
s = *(*[]rtid2ti)(x2)
}
return
}
func (x *atomicTypeInfoSlice) store(p []rtid2ti) {
atomic.StorePointer(&x.v, unsafe.Pointer(&p))
}
// MARKER: in safe mode, atomicXXX are atomic.Value, which contains an interface{}.
// This is 2 words.
// consider padding atomicXXX here with a uintptr, so they fit into 2 words also.
// --------------------------
type atomicRtidFnSlice struct {
v unsafe.Pointer // *[]codecRtidFn
}
func (x *atomicRtidFnSlice) load() (s []codecRtidFn) {
x2 := atomic.LoadPointer(&x.v)
if x2 != nil {
s = *(*[]codecRtidFn)(x2)
}
return
}
func (x *atomicRtidFnSlice) store(p []codecRtidFn) {
atomic.StorePointer(&x.v, unsafe.Pointer(&p))
}
// --------------------------
type atomicClsErr struct {
v unsafe.Pointer // *clsErr
}
func (x *atomicClsErr) load() (e clsErr) {
x2 := (*clsErr)(atomic.LoadPointer(&x.v))
if x2 != nil {
e = *x2
}
return
}
func (x *atomicClsErr) store(p clsErr) {
atomic.StorePointer(&x.v, unsafe.Pointer(&p))
}
// --------------------------
// to create a reflect.Value for each member field of fauxUnion,
// we first create a global fauxUnion, and create reflect.Value
// for them all.
// This way, we have the flags and type in the reflect.Value.
// Then, when a reflect.Value is called, we just copy it,
// update the ptr to the fauxUnion's, and return it.
type unsafeDecNakedWrapper struct {
fauxUnion
ru, ri, rf, rl, rs, rb, rt reflect.Value // mapping to the primitives above
}
func (n *unsafeDecNakedWrapper) init() {
n.ru = rv4iptr(&n.u).Elem()
n.ri = rv4iptr(&n.i).Elem()
n.rf = rv4iptr(&n.f).Elem()
n.rl = rv4iptr(&n.l).Elem()
n.rs = rv4iptr(&n.s).Elem()
n.rt = rv4iptr(&n.t).Elem()
n.rb = rv4iptr(&n.b).Elem()
// n.rr[] = reflect.ValueOf(&n.)
}
var defUnsafeDecNakedWrapper unsafeDecNakedWrapper
func init() {
defUnsafeDecNakedWrapper.init()
}
func (n *fauxUnion) ru() (v reflect.Value) {
v = defUnsafeDecNakedWrapper.ru
((*unsafeReflectValue)(unsafe.Pointer(&v))).ptr = unsafe.Pointer(&n.u)
return
}
func (n *fauxUnion) ri() (v reflect.Value) {
v = defUnsafeDecNakedWrapper.ri
((*unsafeReflectValue)(unsafe.Pointer(&v))).ptr = unsafe.Pointer(&n.i)
return
}
func (n *fauxUnion) rf() (v reflect.Value) {
v = defUnsafeDecNakedWrapper.rf
((*unsafeReflectValue)(unsafe.Pointer(&v))).ptr = unsafe.Pointer(&n.f)
return
}
func (n *fauxUnion) rl() (v reflect.Value) {
v = defUnsafeDecNakedWrapper.rl
((*unsafeReflectValue)(unsafe.Pointer(&v))).ptr = unsafe.Pointer(&n.l)
return
}
func (n *fauxUnion) rs() (v reflect.Value) {
v = defUnsafeDecNakedWrapper.rs
((*unsafeReflectValue)(unsafe.Pointer(&v))).ptr = unsafe.Pointer(&n.s)
return
}
func (n *fauxUnion) rt() (v reflect.Value) {
v = defUnsafeDecNakedWrapper.rt
((*unsafeReflectValue)(unsafe.Pointer(&v))).ptr = unsafe.Pointer(&n.t)
return
}
func (n *fauxUnion) rb() (v reflect.Value) {
v = defUnsafeDecNakedWrapper.rb
((*unsafeReflectValue)(unsafe.Pointer(&v))).ptr = unsafe.Pointer(&n.b)
return
}
// --------------------------
func rvSetBytes(rv reflect.Value, v []byte) {
urv := (*unsafeReflectValue)(unsafe.Pointer(&rv))
*(*[]byte)(urv.ptr) = v
}
func rvSetString(rv reflect.Value, v string) {
urv := (*unsafeReflectValue)(unsafe.Pointer(&rv))
*(*string)(urv.ptr) = v
}
func rvSetBool(rv reflect.Value, v bool) {
urv := (*unsafeReflectValue)(unsafe.Pointer(&rv))
*(*bool)(urv.ptr) = v
}
func rvSetTime(rv reflect.Value, v time.Time) {
urv := (*unsafeReflectValue)(unsafe.Pointer(&rv))
*(*time.Time)(urv.ptr) = v
}
func rvSetFloat32(rv reflect.Value, v float32) {
urv := (*unsafeReflectValue)(unsafe.Pointer(&rv))
*(*float32)(urv.ptr) = v
}
func rvSetFloat64(rv reflect.Value, v float64) {
urv := (*unsafeReflectValue)(unsafe.Pointer(&rv))
*(*float64)(urv.ptr) = v
}
func rvSetComplex64(rv reflect.Value, v complex64) {
urv := (*unsafeReflectValue)(unsafe.Pointer(&rv))
*(*complex64)(urv.ptr) = v
}
func rvSetComplex128(rv reflect.Value, v complex128) {
urv := (*unsafeReflectValue)(unsafe.Pointer(&rv))
*(*complex128)(urv.ptr) = v
}
func rvSetInt(rv reflect.Value, v int) {
urv := (*unsafeReflectValue)(unsafe.Pointer(&rv))
*(*int)(urv.ptr) = v
}
func rvSetInt8(rv reflect.Value, v int8) {
urv := (*unsafeReflectValue)(unsafe.Pointer(&rv))
*(*int8)(urv.ptr) = v
}
func rvSetInt16(rv reflect.Value, v int16) {
urv := (*unsafeReflectValue)(unsafe.Pointer(&rv))
*(*int16)(urv.ptr) = v
}
func rvSetInt32(rv reflect.Value, v int32) {
urv := (*unsafeReflectValue)(unsafe.Pointer(&rv))
*(*int32)(urv.ptr) = v
}
func rvSetInt64(rv reflect.Value, v int64) {
urv := (*unsafeReflectValue)(unsafe.Pointer(&rv))
*(*int64)(urv.ptr) = v
}
func rvSetUint(rv reflect.Value, v uint) {
urv := (*unsafeReflectValue)(unsafe.Pointer(&rv))
*(*uint)(urv.ptr) = v
}
func rvSetUintptr(rv reflect.Value, v uintptr) {
urv := (*unsafeReflectValue)(unsafe.Pointer(&rv))
*(*uintptr)(urv.ptr) = v
}
func rvSetUint8(rv reflect.Value, v uint8) {
urv := (*unsafeReflectValue)(unsafe.Pointer(&rv))
*(*uint8)(urv.ptr) = v
}
func rvSetUint16(rv reflect.Value, v uint16) {
urv := (*unsafeReflectValue)(unsafe.Pointer(&rv))
*(*uint16)(urv.ptr) = v
}
func rvSetUint32(rv reflect.Value, v uint32) {
urv := (*unsafeReflectValue)(unsafe.Pointer(&rv))
*(*uint32)(urv.ptr) = v
}
func rvSetUint64(rv reflect.Value, v uint64) {
urv := (*unsafeReflectValue)(unsafe.Pointer(&rv))
*(*uint64)(urv.ptr) = v
}
// ----------------
// rvSetZero is rv.Set(reflect.Zero(rv.Type()) for all kinds (including reflect.Interface).
func rvSetZero(rv reflect.Value) {
rvSetDirectZero(rv)
}
func rvSetIntf(rv reflect.Value, v reflect.Value) {
rv.Set(v)
}
// rvSetDirect is rv.Set for all kinds except reflect.Interface.
//
// Callers MUST not pass a value of kind reflect.Interface, as it may cause unexpected segfaults.
func rvSetDirect(rv reflect.Value, v reflect.Value) {
// MARKER: rv.Set for kind reflect.Interface may do a separate allocation if a scalar value.
// The book-keeping is onerous, so we just do the simple ones where a memmove is sufficient.
urv := (*unsafeReflectValue)(unsafe.Pointer(&rv))
uv := (*unsafeReflectValue)(unsafe.Pointer(&v))
if uv.flag&unsafeFlagIndir == 0 {
*(*unsafe.Pointer)(urv.ptr) = uv.ptr
} else if uv.ptr == unsafeZeroAddr {
if urv.ptr != unsafeZeroAddr {
typedmemclr(urv.typ, urv.ptr)
}
} else {
typedmemmove(urv.typ, urv.ptr, uv.ptr)
}
}
// rvSetDirectZero is rv.Set(reflect.Zero(rv.Type()) for all kinds except reflect.Interface.
func rvSetDirectZero(rv reflect.Value) {
urv := (*unsafeReflectValue)(unsafe.Pointer(&rv))
if urv.ptr != unsafeZeroAddr {
typedmemclr(urv.typ, urv.ptr)
}
}
// rvMakeSlice updates the slice to point to a new array.
// It copies data from old slice to new slice.
// It returns set=true iff it updates it, else it just returns a new slice pointing to a newly made array.
func rvMakeSlice(rv reflect.Value, ti *typeInfo, xlen, xcap int) (_ reflect.Value, set bool) {
urv := (*unsafeReflectValue)(unsafe.Pointer(&rv))
ux := (*unsafeSlice)(urv.ptr)
t := ((*unsafeIntf)(unsafe.Pointer(&ti.elem))).ptr
s := unsafeSlice{newarray(t, xcap), xlen, xcap}
if ux.Len > 0 {
typedslicecopy(t, s, *ux)
}
*ux = s
return rv, true
}
// rvSlice returns a sub-slice of the slice given new lenth,
// without modifying passed in value.
// It is typically called when we know that SetLen(...) cannot be done.
func rvSlice(rv reflect.Value, length int) reflect.Value {
urv := (*unsafeReflectValue)(unsafe.Pointer(&rv))
var x []struct{}
ux := (*unsafeSlice)(unsafe.Pointer(&x))
*ux = *(*unsafeSlice)(urv.ptr)
ux.Len = length
urv.ptr = unsafe.Pointer(ux)
return rv
}
// rcGrowSlice updates the slice to point to a new array with the cap incremented, and len set to the new cap value.
// It copies data from old slice to new slice.
// It returns set=true iff it updates it, else it just returns a new slice pointing to a newly made array.
func rvGrowSlice(rv reflect.Value, ti *typeInfo, cap, incr int) (v reflect.Value, newcap int, set bool) {
urv := (*unsafeReflectValue)(unsafe.Pointer(&rv))
ux := (*unsafeSlice)(urv.ptr)
t := ((*unsafeIntf)(unsafe.Pointer(&ti.elem))).ptr
*ux = unsafeGrowslice(t, *ux, cap, incr)
ux.Len = ux.Cap
return rv, ux.Cap, true
}
// ------------
func rvSliceIndex(rv reflect.Value, i int, ti *typeInfo) (v reflect.Value) {
urv := (*unsafeReflectValue)(unsafe.Pointer(&rv))
uv := (*unsafeReflectValue)(unsafe.Pointer(&v))
uv.ptr = unsafe.Pointer(uintptr(((*unsafeSlice)(urv.ptr)).Data) + uintptr(int(ti.elemsize)*i))
uv.typ = ((*unsafeIntf)(unsafe.Pointer(&ti.elem))).ptr
uv.flag = uintptr(ti.elemkind) | unsafeFlagIndir | unsafeFlagAddr
return
}
func rvSliceZeroCap(t reflect.Type) (v reflect.Value) {
urv := (*unsafeReflectValue)(unsafe.Pointer(&v))
urv.typ = ((*unsafeIntf)(unsafe.Pointer(&t))).ptr
urv.flag = uintptr(reflect.Slice) | unsafeFlagIndir
urv.ptr = unsafe.Pointer(&unsafeZeroSlice)
return
}
func rvLenSlice(rv reflect.Value) int {
urv := (*unsafeReflectValue)(unsafe.Pointer(&rv))
return (*unsafeSlice)(urv.ptr).Len
}
func rvCapSlice(rv reflect.Value) int {
urv := (*unsafeReflectValue)(unsafe.Pointer(&rv))
return (*unsafeSlice)(urv.ptr).Cap
}
func rvArrayIndex(rv reflect.Value, i int, ti *typeInfo) (v reflect.Value) {
urv := (*unsafeReflectValue)(unsafe.Pointer(&rv))
uv := (*unsafeReflectValue)(unsafe.Pointer(&v))
uv.ptr = unsafe.Pointer(uintptr(urv.ptr) + uintptr(int(ti.elemsize)*i))
uv.typ = ((*unsafeIntf)(unsafe.Pointer(&ti.elem))).ptr
uv.flag = uintptr(ti.elemkind) | unsafeFlagIndir | unsafeFlagAddr
return
}
// if scratch is nil, then return a writable view (assuming canAddr=true)
func rvGetArrayBytes(rv reflect.Value, scratch []byte) (bs []byte) {
urv := (*unsafeReflectValue)(unsafe.Pointer(&rv))
bx := (*unsafeSlice)(unsafe.Pointer(&bs))
bx.Data = urv.ptr
bx.Len = rv.Len()
bx.Cap = bx.Len
return
}
func rvGetArray4Slice(rv reflect.Value) (v reflect.Value) {
// It is possible that this slice is based off an array with a larger
// len that we want (where array len == slice cap).
// However, it is ok to create an array type that is a subset of the full
// e.g. full slice is based off a *[16]byte, but we can create a *[4]byte
// off of it. That is ok.
//
// Consequently, we use rvLenSlice, not rvCapSlice.
t := reflectArrayOf(rvLenSlice(rv), rvType(rv).Elem())
// v = rvZeroAddrK(t, reflect.Array)
uv := (*unsafeReflectValue)(unsafe.Pointer(&v))
uv.flag = uintptr(reflect.Array) | unsafeFlagIndir | unsafeFlagAddr
uv.typ = ((*unsafeIntf)(unsafe.Pointer(&t))).ptr
urv := (*unsafeReflectValue)(unsafe.Pointer(&rv))
uv.ptr = *(*unsafe.Pointer)(urv.ptr) // slice rv has a ptr to the slice.
return
}
func rvGetSlice4Array(rv reflect.Value, v interface{}) {
// v is a pointer to a slice to be populated
uv := (*unsafeIntf)(unsafe.Pointer(&v))
urv := (*unsafeReflectValue)(unsafe.Pointer(&rv))
s := (*unsafeSlice)(uv.ptr)
s.Data = urv.ptr
s.Len = rv.Len()
s.Cap = s.Len
}
func rvCopySlice(dest, src reflect.Value, elemType reflect.Type) {
typedslicecopy((*unsafeIntf)(unsafe.Pointer(&elemType)).ptr,
*(*unsafeSlice)((*unsafeReflectValue)(unsafe.Pointer(&dest)).ptr),
*(*unsafeSlice)((*unsafeReflectValue)(unsafe.Pointer(&src)).ptr))
}
// ------------
func rvGetBool(rv reflect.Value) bool {
v := (*unsafeReflectValue)(unsafe.Pointer(&rv))
return *(*bool)(v.ptr)
}
func rvGetBytes(rv reflect.Value) []byte {
v := (*unsafeReflectValue)(unsafe.Pointer(&rv))
return *(*[]byte)(v.ptr)
}
func rvGetTime(rv reflect.Value) time.Time {
v := (*unsafeReflectValue)(unsafe.Pointer(&rv))
return *(*time.Time)(v.ptr)
}
func rvGetString(rv reflect.Value) string {
v := (*unsafeReflectValue)(unsafe.Pointer(&rv))
return *(*string)(v.ptr)
}
func rvGetFloat64(rv reflect.Value) float64 {
v := (*unsafeReflectValue)(unsafe.Pointer(&rv))
return *(*float64)(v.ptr)
}
func rvGetFloat32(rv reflect.Value) float32 {
v := (*unsafeReflectValue)(unsafe.Pointer(&rv))
return *(*float32)(v.ptr)
}
func rvGetComplex64(rv reflect.Value) complex64 {
v := (*unsafeReflectValue)(unsafe.Pointer(&rv))
return *(*complex64)(v.ptr)
}
func rvGetComplex128(rv reflect.Value) complex128 {
v := (*unsafeReflectValue)(unsafe.Pointer(&rv))
return *(*complex128)(v.ptr)
}
func rvGetInt(rv reflect.Value) int {
v := (*unsafeReflectValue)(unsafe.Pointer(&rv))
return *(*int)(v.ptr)
}
func rvGetInt8(rv reflect.Value) int8 {
v := (*unsafeReflectValue)(unsafe.Pointer(&rv))
return *(*int8)(v.ptr)
}
func rvGetInt16(rv reflect.Value) int16 {
v := (*unsafeReflectValue)(unsafe.Pointer(&rv))
return *(*int16)(v.ptr)
}
func rvGetInt32(rv reflect.Value) int32 {
v := (*unsafeReflectValue)(unsafe.Pointer(&rv))
return *(*int32)(v.ptr)
}
func rvGetInt64(rv reflect.Value) int64 {
v := (*unsafeReflectValue)(unsafe.Pointer(&rv))
return *(*int64)(v.ptr)
}
func rvGetUint(rv reflect.Value) uint {
v := (*unsafeReflectValue)(unsafe.Pointer(&rv))
return *(*uint)(v.ptr)
}
func rvGetUint8(rv reflect.Value) uint8 {
v := (*unsafeReflectValue)(unsafe.Pointer(&rv))
return *(*uint8)(v.ptr)
}
func rvGetUint16(rv reflect.Value) uint16 {
v := (*unsafeReflectValue)(unsafe.Pointer(&rv))
return *(*uint16)(v.ptr)
}
func rvGetUint32(rv reflect.Value) uint32 {
v := (*unsafeReflectValue)(unsafe.Pointer(&rv))
return *(*uint32)(v.ptr)
}
func rvGetUint64(rv reflect.Value) uint64 {
v := (*unsafeReflectValue)(unsafe.Pointer(&rv))
return *(*uint64)(v.ptr)
}
func rvGetUintptr(rv reflect.Value) uintptr {
v := (*unsafeReflectValue)(unsafe.Pointer(&rv))
return *(*uintptr)(v.ptr)
}
func rvLenMap(rv reflect.Value) int {
// maplen is not inlined, because as of go1.16beta, go:linkname's are not inlined.
// thus, faster to call rv.Len() directly.
//
// MARKER: review after https://github.com/golang/go/issues/20019 fixed.
// return rv.Len()
return len_map(rvRefPtr((*unsafeReflectValue)(unsafe.Pointer(&rv))))
}
// Note: it is hard to find len(...) of an array type,
// as that is a field in the arrayType representing the array, and hard to introspect.
//
// func rvLenArray(rv reflect.Value) int { return rv.Len() }
// ------------ map range and map indexing ----------
// regular calls to map via reflection: MapKeys, MapIndex, MapRange/MapIter etc
// will always allocate for each map key or value.
//
// It is more performant to provide a value that the map entry is set into,
// and that elides the allocation.
// go 1.4+ has runtime/hashmap.go or runtime/map.go which has a
// hIter struct with the first 2 values being key and value
// of the current iteration.
//
// This *hIter is passed to mapiterinit, mapiternext, mapiterkey, mapiterelem.
// We bypass the reflect wrapper functions and just use the *hIter directly.
//
// Though *hIter has many fields, we only care about the first 2.
//
// We directly embed this in unsafeMapIter below
//
// hiter is typically about 12 words, but we just fill up unsafeMapIter to 32 words,
// so it fills multiple cache lines and can give some extra space to accomodate small growth.
type unsafeMapIter struct {
mtyp, mptr unsafe.Pointer
k, v reflect.Value
kisref bool
visref bool
mapvalues bool
done bool
started bool
_ [3]byte // padding
it struct {
key unsafe.Pointer
value unsafe.Pointer
_ [20]uintptr // padding for other fields (to make up 32 words for enclosing struct)
}
}
func (t *unsafeMapIter) Next() (r bool) {
if t == nil || t.done {
return
}
if t.started {
mapiternext((unsafe.Pointer)(&t.it))
} else {
t.started = true
}
t.done = t.it.key == nil
if t.done {
return
}
if helperUnsafeDirectAssignMapEntry || t.kisref {
(*unsafeReflectValue)(unsafe.Pointer(&t.k)).ptr = t.it.key
} else {
k := (*unsafeReflectValue)(unsafe.Pointer(&t.k))
typedmemmove(k.typ, k.ptr, t.it.key)
}
if t.mapvalues {
if helperUnsafeDirectAssignMapEntry || t.visref {
(*unsafeReflectValue)(unsafe.Pointer(&t.v)).ptr = t.it.value
} else {
v := (*unsafeReflectValue)(unsafe.Pointer(&t.v))
typedmemmove(v.typ, v.ptr, t.it.value)
}
}
return true
}
func (t *unsafeMapIter) Key() (r reflect.Value) {
return t.k
}
func (t *unsafeMapIter) Value() (r reflect.Value) {
return t.v
}
func (t *unsafeMapIter) Done() {}
type mapIter struct {
unsafeMapIter
}
func mapRange(t *mapIter, m, k, v reflect.Value, mapvalues bool) {
if rvIsNil(m) {
t.done = true
return
}
t.done = false
t.started = false
t.mapvalues = mapvalues
// var urv *unsafeReflectValue
urv := (*unsafeReflectValue)(unsafe.Pointer(&m))
t.mtyp = urv.typ
t.mptr = rvRefPtr(urv)
// t.it = (*unsafeMapHashIter)(reflect_mapiterinit(t.mtyp, t.mptr))
mapiterinit(t.mtyp, t.mptr, unsafe.Pointer(&t.it))
t.k = k
t.kisref = refBitset.isset(byte(k.Kind()))
if mapvalues {
t.v = v
t.visref = refBitset.isset(byte(v.Kind()))
} else {
t.v = reflect.Value{}
}
}
// unsafeMapKVPtr returns the pointer if flagIndir, else it returns a pointer to the pointer.
// It is needed as maps always keep a reference to the underlying value.
func unsafeMapKVPtr(urv *unsafeReflectValue) unsafe.Pointer {
if urv.flag&unsafeFlagIndir == 0 {
return unsafe.Pointer(&urv.ptr)
}
return urv.ptr
}
// func mapDelete(m, k reflect.Value) {
// var urv = (*unsafeReflectValue)(unsafe.Pointer(&k))
// var kptr = unsafeMapKVPtr(urv)
// urv = (*unsafeReflectValue)(unsafe.Pointer(&m))
// mapdelete(urv.typ, rv2ptr(urv), kptr)
// }
// return an addressable reflect value that can be used in mapRange and mapGet operations.
//
// all calls to mapGet or mapRange will call here to get an addressable reflect.Value.
func mapAddrLoopvarRV(t reflect.Type, k reflect.Kind) (rv reflect.Value) {
// return rvZeroAddrK(t, k)
urv := (*unsafeReflectValue)(unsafe.Pointer(&rv))
urv.flag = uintptr(k) | unsafeFlagIndir | unsafeFlagAddr
urv.typ = ((*unsafeIntf)(unsafe.Pointer(&t))).ptr
// since we always set the ptr when helperUnsafeDirectAssignMapEntry=true,
// we should only allocate if it is not true
if !helperUnsafeDirectAssignMapEntry {
urv.ptr = unsafeNew(urv.typ)
}
return
}
// ---------- ENCODER optimized ---------------
func (e *Encoder) jsondriver() *jsonEncDriver {
return (*jsonEncDriver)((*unsafeIntf)(unsafe.Pointer(&e.e)).ptr)
}
func (d *Decoder) zerocopystate() bool {
return d.decByteState == decByteStateZerocopy && d.h.ZeroCopy
}
func (d *Decoder) stringZC(v []byte) (s string) {
if d.zerocopystate() {
return stringView(v)
}
return d.string(v)
}
func (d *Decoder) mapKeyString(callFnRvk *bool, kstrbs, kstr2bs *[]byte) string {
if !d.zerocopystate() {
*callFnRvk = true
if d.decByteState == decByteStateReuseBuf {
*kstrbs = append((*kstrbs)[:0], (*kstr2bs)...)
*kstr2bs = *kstrbs
}
}
return stringView(*kstr2bs)
}
// ---------- DECODER optimized ---------------
func (d *Decoder) checkBreak() bool {
// MARKER: jsonDecDriver.CheckBreak() costs over 80, and this isn't inlined.
// Consequently, there's no benefit in incurring the cost of this
// wrapping function checkBreak.
//
// It is faster to just call the interface method directly.
// if d.js {
// return d.jsondriver().CheckBreak()
// }
// if d.cbor {
// return d.cbordriver().CheckBreak()
// }
return d.d.CheckBreak()
}
func (d *Decoder) jsondriver() *jsonDecDriver {
return (*jsonDecDriver)((*unsafeIntf)(unsafe.Pointer(&d.d)).ptr)
}
// ---------- structFieldInfo optimized ---------------
func (n *structFieldInfoPathNode) rvField(v reflect.Value) (rv reflect.Value) {
// we already know this is exported, and maybe embedded (based on what si says)
uv := (*unsafeReflectValue)(unsafe.Pointer(&v))
urv := (*unsafeReflectValue)(unsafe.Pointer(&rv))
// clear flagEmbedRO if necessary, and inherit permission bits from v
urv.flag = uv.flag&(unsafeFlagStickyRO|unsafeFlagIndir|unsafeFlagAddr) | uintptr(n.kind)
urv.typ = ((*unsafeIntf)(unsafe.Pointer(&n.typ))).ptr
urv.ptr = unsafe.Pointer(uintptr(uv.ptr) + uintptr(n.offset))
return
}
// runtime chan and map are designed such that the first field is the count.
// len builtin uses this to get the length of a chan/map easily.
// leverage this knowledge, since maplen and chanlen functions from runtime package
// are go:linkname'd here, and thus not inlined as of go1.16beta
func len_map_chan(m unsafe.Pointer) int {
if m == nil {
return 0
}
return *((*int)(m))
}
func len_map(m unsafe.Pointer) int {
// return maplen(m)
return len_map_chan(m)
}
func len_chan(m unsafe.Pointer) int {
// return chanlen(m)
return len_map_chan(m)
}
func unsafeNew(typ unsafe.Pointer) unsafe.Pointer {
return mallocgc(rtsize2(typ), typ, true)
}
// ---------- go linknames (LINKED to runtime/reflect) ---------------
// MARKER: always check that these linknames match subsequent versions of go
//
// Note that as of Jan 2021 (go 1.16 release), go:linkname(s) are not inlined
// outside of the standard library use (e.g. within sync, reflect, etc).
// If these link'ed functions were normally inlined, calling them here would
// not necessarily give a performance boost, due to function overhead.
//
// However, it seems most of these functions are not inlined anyway,
// as only maplen, chanlen and mapaccess are small enough to get inlined.
//
// We checked this by going into $GOROOT/src/runtime and running:
// $ go build -tags codec.notfastpath -gcflags "-m=2"
// reflect.{unsafe_New, unsafe_NewArray} are not supported in gollvm,
// failing with "error: undefined reference" error.
// however, runtime.{mallocgc, newarray} are supported, so use that instead.
//go:linkname mallocgc runtime.mallocgc
//go:noescape
func mallocgc(size uintptr, typ unsafe.Pointer, needzero bool) unsafe.Pointer
//go:linkname newarray runtime.newarray
//go:noescape
func newarray(typ unsafe.Pointer, n int) unsafe.Pointer
//go:linkname mapiterinit runtime.mapiterinit
//go:noescape
func mapiterinit(typ unsafe.Pointer, m unsafe.Pointer, it unsafe.Pointer)
//go:linkname mapiternext runtime.mapiternext
//go:noescape
func mapiternext(it unsafe.Pointer) (key unsafe.Pointer)
//go:linkname mapdelete runtime.mapdelete
//go:noescape
func mapdelete(typ unsafe.Pointer, m unsafe.Pointer, key unsafe.Pointer)
//go:linkname mapassign runtime.mapassign
//go:noescape
func mapassign(typ unsafe.Pointer, m unsafe.Pointer, key unsafe.Pointer) unsafe.Pointer
//go:linkname mapaccess2 runtime.mapaccess2
//go:noescape
func mapaccess2(typ unsafe.Pointer, m unsafe.Pointer, key unsafe.Pointer) (val unsafe.Pointer, ok bool)
// reflect.typed{memmove, memclr, slicecopy} will handle checking if the type has pointers or not,
// and if a writeBarrier is needed, before delegating to the right method in the runtime.
//
// This is why we use the functions in reflect, and not the ones in runtime directly.
// Calling runtime.XXX here will lead to memory issues.
//go:linkname typedslicecopy reflect.typedslicecopy
//go:noescape
func typedslicecopy(elemType unsafe.Pointer, dst, src unsafeSlice) int
//go:linkname typedmemmove reflect.typedmemmove
//go:noescape
func typedmemmove(typ unsafe.Pointer, dst, src unsafe.Pointer)
//go:linkname typedmemclr reflect.typedmemclr
//go:noescape
func typedmemclr(typ unsafe.Pointer, dst unsafe.Pointer)
|