1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
|
// Copyright 2014-2022 Ulrich Kunitz. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package lzma
import (
"errors"
"unicode"
)
// node represents a node in the binary tree.
type node struct {
// x is the search value
x uint32
// p parent node
p uint32
// l left child
l uint32
// r right child
r uint32
}
// wordLen is the number of bytes represented by the v field of a node.
const wordLen = 4
// binTree supports the identification of the next operation based on a
// binary tree.
//
// Nodes will be identified by their index into the ring buffer.
type binTree struct {
dict *encoderDict
// ring buffer of nodes
node []node
// absolute offset of the entry for the next node. Position 4
// byte larger.
hoff int64
// front position in the node ring buffer
front uint32
// index of the root node
root uint32
// current x value
x uint32
// preallocated array
data []byte
}
// null represents the nonexistent index. We can't use zero because it
// would always exist or we would need to decrease the index for each
// reference.
const null uint32 = 1<<32 - 1
// newBinTree initializes the binTree structure. The capacity defines
// the size of the buffer and defines the maximum distance for which
// matches will be found.
func newBinTree(capacity int) (t *binTree, err error) {
if capacity < 1 {
return nil, errors.New(
"newBinTree: capacity must be larger than zero")
}
if int64(capacity) >= int64(null) {
return nil, errors.New(
"newBinTree: capacity must less 2^{32}-1")
}
t = &binTree{
node: make([]node, capacity),
hoff: -int64(wordLen),
root: null,
data: make([]byte, maxMatchLen),
}
return t, nil
}
func (t *binTree) SetDict(d *encoderDict) { t.dict = d }
// WriteByte writes a single byte into the binary tree.
func (t *binTree) WriteByte(c byte) error {
t.x = (t.x << 8) | uint32(c)
t.hoff++
if t.hoff < 0 {
return nil
}
v := t.front
if int64(v) < t.hoff {
// We are overwriting old nodes stored in the tree.
t.remove(v)
}
t.node[v].x = t.x
t.add(v)
t.front++
if int64(t.front) >= int64(len(t.node)) {
t.front = 0
}
return nil
}
// Writes writes a sequence of bytes into the binTree structure.
func (t *binTree) Write(p []byte) (n int, err error) {
for _, c := range p {
t.WriteByte(c)
}
return len(p), nil
}
// add puts the node v into the tree. The node must not be part of the
// tree before.
func (t *binTree) add(v uint32) {
vn := &t.node[v]
// Set left and right to null indices.
vn.l, vn.r = null, null
// If the binary tree is empty make v the root.
if t.root == null {
t.root = v
vn.p = null
return
}
x := vn.x
p := t.root
// Search for the right leave link and add the new node.
for {
pn := &t.node[p]
if x <= pn.x {
if pn.l == null {
pn.l = v
vn.p = p
return
}
p = pn.l
} else {
if pn.r == null {
pn.r = v
vn.p = p
return
}
p = pn.r
}
}
}
// parent returns the parent node index of v and the pointer to v value
// in the parent.
func (t *binTree) parent(v uint32) (p uint32, ptr *uint32) {
if t.root == v {
return null, &t.root
}
p = t.node[v].p
if t.node[p].l == v {
ptr = &t.node[p].l
} else {
ptr = &t.node[p].r
}
return
}
// Remove node v.
func (t *binTree) remove(v uint32) {
vn := &t.node[v]
p, ptr := t.parent(v)
l, r := vn.l, vn.r
if l == null {
// Move the right child up.
*ptr = r
if r != null {
t.node[r].p = p
}
return
}
if r == null {
// Move the left child up.
*ptr = l
t.node[l].p = p
return
}
// Search the in-order predecessor u.
un := &t.node[l]
ur := un.r
if ur == null {
// In order predecessor is l. Move it up.
un.r = r
t.node[r].p = l
un.p = p
*ptr = l
return
}
var u uint32
for {
// Look for the max value in the tree where l is root.
u = ur
ur = t.node[u].r
if ur == null {
break
}
}
// replace u with ul
un = &t.node[u]
ul := un.l
up := un.p
t.node[up].r = ul
if ul != null {
t.node[ul].p = up
}
// replace v by u
un.l, un.r = l, r
t.node[l].p = u
t.node[r].p = u
*ptr = u
un.p = p
}
// search looks for the node that have the value x or for the nodes that
// brace it. The node highest in the tree with the value x will be
// returned. All other nodes with the same value live in left subtree of
// the returned node.
func (t *binTree) search(v uint32, x uint32) (a, b uint32) {
a, b = null, null
if v == null {
return
}
for {
vn := &t.node[v]
if x <= vn.x {
if x == vn.x {
return v, v
}
b = v
if vn.l == null {
return
}
v = vn.l
} else {
a = v
if vn.r == null {
return
}
v = vn.r
}
}
}
// max returns the node with maximum value in the subtree with v as
// root.
func (t *binTree) max(v uint32) uint32 {
if v == null {
return null
}
for {
r := t.node[v].r
if r == null {
return v
}
v = r
}
}
// min returns the node with the minimum value in the subtree with v as
// root.
func (t *binTree) min(v uint32) uint32 {
if v == null {
return null
}
for {
l := t.node[v].l
if l == null {
return v
}
v = l
}
}
// pred returns the in-order predecessor of node v.
func (t *binTree) pred(v uint32) uint32 {
if v == null {
return null
}
u := t.max(t.node[v].l)
if u != null {
return u
}
for {
p := t.node[v].p
if p == null {
return null
}
if t.node[p].r == v {
return p
}
v = p
}
}
// succ returns the in-order successor of node v.
func (t *binTree) succ(v uint32) uint32 {
if v == null {
return null
}
u := t.min(t.node[v].r)
if u != null {
return u
}
for {
p := t.node[v].p
if p == null {
return null
}
if t.node[p].l == v {
return p
}
v = p
}
}
// xval converts the first four bytes of a into an 32-bit unsigned
// integer in big-endian order.
func xval(a []byte) uint32 {
var x uint32
switch len(a) {
default:
x |= uint32(a[3])
fallthrough
case 3:
x |= uint32(a[2]) << 8
fallthrough
case 2:
x |= uint32(a[1]) << 16
fallthrough
case 1:
x |= uint32(a[0]) << 24
case 0:
}
return x
}
// dumpX converts value x into a four-letter string.
func dumpX(x uint32) string {
a := make([]byte, 4)
for i := 0; i < 4; i++ {
c := byte(x >> uint((3-i)*8))
if unicode.IsGraphic(rune(c)) {
a[i] = c
} else {
a[i] = '.'
}
}
return string(a)
}
/*
// dumpNode writes a representation of the node v into the io.Writer.
func (t *binTree) dumpNode(w io.Writer, v uint32, indent int) {
if v == null {
return
}
vn := &t.node[v]
t.dumpNode(w, vn.r, indent+2)
for i := 0; i < indent; i++ {
fmt.Fprint(w, " ")
}
if vn.p == null {
fmt.Fprintf(w, "node %d %q parent null\n", v, dumpX(vn.x))
} else {
fmt.Fprintf(w, "node %d %q parent %d\n", v, dumpX(vn.x), vn.p)
}
t.dumpNode(w, vn.l, indent+2)
}
// dump prints a representation of the binary tree into the writer.
func (t *binTree) dump(w io.Writer) error {
bw := bufio.NewWriter(w)
t.dumpNode(bw, t.root, 0)
return bw.Flush()
}
*/
func (t *binTree) distance(v uint32) int {
dist := int(t.front) - int(v)
if dist <= 0 {
dist += len(t.node)
}
return dist
}
type matchParams struct {
rep [4]uint32
// length when match will be accepted
nAccept int
// nodes to check
check int
// finish if length get shorter
stopShorter bool
}
func (t *binTree) match(m match, distIter func() (int, bool), p matchParams,
) (r match, checked int, accepted bool) {
buf := &t.dict.buf
for {
if checked >= p.check {
return m, checked, true
}
dist, ok := distIter()
if !ok {
return m, checked, false
}
checked++
if m.n > 0 {
i := buf.rear - dist + m.n - 1
if i < 0 {
i += len(buf.data)
} else if i >= len(buf.data) {
i -= len(buf.data)
}
if buf.data[i] != t.data[m.n-1] {
if p.stopShorter {
return m, checked, false
}
continue
}
}
n := buf.matchLen(dist, t.data)
switch n {
case 0:
if p.stopShorter {
return m, checked, false
}
continue
case 1:
if uint32(dist-minDistance) != p.rep[0] {
continue
}
}
if n < m.n || (n == m.n && int64(dist) >= m.distance) {
continue
}
m = match{int64(dist), n}
if n >= p.nAccept {
return m, checked, true
}
}
}
func (t *binTree) NextOp(rep [4]uint32) operation {
// retrieve maxMatchLen data
n, _ := t.dict.buf.Peek(t.data[:maxMatchLen])
if n == 0 {
panic("no data in buffer")
}
t.data = t.data[:n]
var (
m match
x, u, v uint32
iterPred, iterSucc func() (int, bool)
)
p := matchParams{
rep: rep,
nAccept: maxMatchLen,
check: 32,
}
i := 4
iterSmall := func() (dist int, ok bool) {
i--
if i <= 0 {
return 0, false
}
return i, true
}
m, checked, accepted := t.match(m, iterSmall, p)
if accepted {
goto end
}
p.check -= checked
x = xval(t.data)
u, v = t.search(t.root, x)
if u == v && len(t.data) == 4 {
iter := func() (dist int, ok bool) {
if u == null {
return 0, false
}
dist = t.distance(u)
u, v = t.search(t.node[u].l, x)
if u != v {
u = null
}
return dist, true
}
m, _, _ = t.match(m, iter, p)
goto end
}
p.stopShorter = true
iterSucc = func() (dist int, ok bool) {
if v == null {
return 0, false
}
dist = t.distance(v)
v = t.succ(v)
return dist, true
}
m, checked, accepted = t.match(m, iterSucc, p)
if accepted {
goto end
}
p.check -= checked
iterPred = func() (dist int, ok bool) {
if u == null {
return 0, false
}
dist = t.distance(u)
u = t.pred(u)
return dist, true
}
m, _, _ = t.match(m, iterPred, p)
end:
if m.n == 0 {
return lit{t.data[0]}
}
return m
}
|