1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
|
package fasthttputil
import (
"errors"
"io"
"net"
"sync"
"time"
)
// NewPipeConns returns new bi-directional connection pipe.
//
// PipeConns is NOT safe for concurrent use by multiple goroutines!
func NewPipeConns() *PipeConns {
ch1 := make(chan *byteBuffer, 4)
ch2 := make(chan *byteBuffer, 4)
pc := &PipeConns{
stopCh: make(chan struct{}),
}
pc.c1.rCh = ch1
pc.c1.wCh = ch2
pc.c2.rCh = ch2
pc.c2.wCh = ch1
pc.c1.pc = pc
pc.c2.pc = pc
return pc
}
// PipeConns provides bi-directional connection pipe,
// which use in-process memory as a transport.
//
// PipeConns must be created by calling NewPipeConns.
//
// PipeConns has the following additional features comparing to connections
// returned from net.Pipe():
//
// - It is faster.
// - It buffers Write calls, so there is no need to have concurrent goroutine
// calling Read in order to unblock each Write call.
// - It supports read and write deadlines.
//
// PipeConns is NOT safe for concurrent use by multiple goroutines!
type PipeConns struct {
stopCh chan struct{}
c1 pipeConn
c2 pipeConn
stopChLock sync.Mutex
}
// SetAddresses sets the local and remote addresses for the connection.
func (pc *PipeConns) SetAddresses(localAddr1, remoteAddr1, localAddr2, remoteAddr2 net.Addr) {
pc.c1.addrLock.Lock()
defer pc.c1.addrLock.Unlock()
pc.c2.addrLock.Lock()
defer pc.c2.addrLock.Unlock()
pc.c1.localAddr = localAddr1
pc.c1.remoteAddr = remoteAddr1
pc.c2.localAddr = localAddr2
pc.c2.remoteAddr = remoteAddr2
}
// Conn1 returns the first end of bi-directional pipe.
//
// Data written to Conn1 may be read from Conn2.
// Data written to Conn2 may be read from Conn1.
func (pc *PipeConns) Conn1() net.Conn {
return &pc.c1
}
// Conn2 returns the second end of bi-directional pipe.
//
// Data written to Conn2 may be read from Conn1.
// Data written to Conn1 may be read from Conn2.
func (pc *PipeConns) Conn2() net.Conn {
return &pc.c2
}
// Close closes pipe connections.
func (pc *PipeConns) Close() error {
pc.stopChLock.Lock()
select {
case <-pc.stopCh:
default:
close(pc.stopCh)
}
pc.stopChLock.Unlock()
return nil
}
type pipeConn struct {
localAddr net.Addr
remoteAddr net.Addr
b *byteBuffer
rCh chan *byteBuffer
wCh chan *byteBuffer
pc *PipeConns
readDeadlineTimer *time.Timer
writeDeadlineTimer *time.Timer
readDeadlineCh <-chan time.Time
writeDeadlineCh <-chan time.Time
bb []byte
addrLock sync.RWMutex
readDeadlineChLock sync.Mutex
}
func (c *pipeConn) Write(p []byte) (int, error) {
b := acquireByteBuffer()
b.b = append(b.b[:0], p...)
select {
case <-c.pc.stopCh:
releaseByteBuffer(b)
return 0, errConnectionClosed
default:
}
select {
case c.wCh <- b:
default:
select {
case c.wCh <- b:
case <-c.writeDeadlineCh:
c.writeDeadlineCh = closedDeadlineCh
return 0, ErrTimeout
case <-c.pc.stopCh:
releaseByteBuffer(b)
return 0, errConnectionClosed
}
}
return len(p), nil
}
func (c *pipeConn) WriteString(s string) (int, error) {
return c.Write(s2b(s))
}
func (c *pipeConn) Read(p []byte) (int, error) {
mayBlock := true
nn := 0
for len(p) > 0 {
n, err := c.read(p, mayBlock)
nn += n
if err != nil {
if !mayBlock && err == errWouldBlock {
err = nil
}
return nn, err
}
p = p[n:]
mayBlock = false
}
return nn, nil
}
func (c *pipeConn) read(p []byte, mayBlock bool) (int, error) {
if len(c.bb) == 0 {
if err := c.readNextByteBuffer(mayBlock); err != nil {
return 0, err
}
}
n := copy(p, c.bb)
c.bb = c.bb[n:]
return n, nil
}
func (c *pipeConn) readNextByteBuffer(mayBlock bool) error {
releaseByteBuffer(c.b)
c.b = nil
select {
case c.b = <-c.rCh:
default:
if !mayBlock {
return errWouldBlock
}
c.readDeadlineChLock.Lock()
readDeadlineCh := c.readDeadlineCh
c.readDeadlineChLock.Unlock()
select {
case c.b = <-c.rCh:
case <-readDeadlineCh:
c.readDeadlineChLock.Lock()
c.readDeadlineCh = closedDeadlineCh
c.readDeadlineChLock.Unlock()
// rCh may contain data when deadline is reached.
// Read the data before returning ErrTimeout.
select {
case c.b = <-c.rCh:
default:
return ErrTimeout
}
case <-c.pc.stopCh:
// rCh may contain data when stopCh is closed.
// Read the data before returning EOF.
select {
case c.b = <-c.rCh:
default:
return io.EOF
}
}
}
c.bb = c.b.b
return nil
}
var (
errWouldBlock = errors.New("would block")
errConnectionClosed = errors.New("connection closed")
)
type timeoutError struct{}
func (e *timeoutError) Error() string {
return "timeout"
}
// Timeout implements the Timeout method of the net.Error interface.
// This allows for checks like:
//
// if x, ok := err.(interface{ Timeout() bool }); ok && x.Timeout() {
func (e *timeoutError) Timeout() bool {
return true
}
// ErrTimeout is returned from Read() or Write() on timeout.
var ErrTimeout = &timeoutError{}
func (c *pipeConn) Close() error {
return c.pc.Close()
}
func (c *pipeConn) LocalAddr() net.Addr {
c.addrLock.RLock()
defer c.addrLock.RUnlock()
if c.localAddr != nil {
return c.localAddr
}
return pipeAddr(0)
}
func (c *pipeConn) RemoteAddr() net.Addr {
c.addrLock.RLock()
defer c.addrLock.RUnlock()
if c.remoteAddr != nil {
return c.remoteAddr
}
return pipeAddr(0)
}
func (c *pipeConn) SetDeadline(deadline time.Time) error {
c.SetReadDeadline(deadline) //nolint:errcheck
c.SetWriteDeadline(deadline) //nolint:errcheck
return nil
}
func (c *pipeConn) SetReadDeadline(deadline time.Time) error {
if c.readDeadlineTimer == nil {
c.readDeadlineTimer = time.NewTimer(time.Hour)
}
readDeadlineCh := updateTimer(c.readDeadlineTimer, deadline)
c.readDeadlineChLock.Lock()
c.readDeadlineCh = readDeadlineCh
c.readDeadlineChLock.Unlock()
return nil
}
func (c *pipeConn) SetWriteDeadline(deadline time.Time) error {
if c.writeDeadlineTimer == nil {
c.writeDeadlineTimer = time.NewTimer(time.Hour)
}
c.writeDeadlineCh = updateTimer(c.writeDeadlineTimer, deadline)
return nil
}
func updateTimer(t *time.Timer, deadline time.Time) <-chan time.Time {
if !t.Stop() {
select {
case <-t.C:
default:
}
}
if deadline.IsZero() {
return nil
}
d := time.Until(deadline)
if d <= 0 {
return closedDeadlineCh
}
t.Reset(d)
return t.C
}
var closedDeadlineCh = func() <-chan time.Time {
ch := make(chan time.Time)
close(ch)
return ch
}()
type pipeAddr int
func (pipeAddr) Network() string {
return "pipe"
}
func (pipeAddr) String() string {
return "pipe"
}
type byteBuffer struct {
b []byte
}
func acquireByteBuffer() *byteBuffer {
return byteBufferPool.Get().(*byteBuffer)
}
func releaseByteBuffer(b *byteBuffer) {
if b != nil {
byteBufferPool.Put(b)
}
}
var byteBufferPool = &sync.Pool{
New: func() any {
return &byteBuffer{
b: make([]byte, 1024),
}
},
}
|