1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
|
package validator
import (
"bytes"
"fmt"
"reflect"
"github.com/vektah/gqlparser/v2/ast"
//nolint:revive // Validator rules each use dot imports for convenience.
. "github.com/vektah/gqlparser/v2/validator"
)
func init() {
AddRule("OverlappingFieldsCanBeMerged", func(observers *Events, addError AddErrFunc) {
/**
* Algorithm:
*
* Conflicts occur when two fields exist in a query which will produce the same
* response name, but represent differing values, thus creating a conflict.
* The algorithm below finds all conflicts via making a series of comparisons
* between fields. In order to compare as few fields as possible, this makes
* a series of comparisons "within" sets of fields and "between" sets of fields.
*
* Given any selection set, a collection produces both a set of fields by
* also including all inline fragments, as well as a list of fragments
* referenced by fragment spreads.
*
* A) Each selection set represented in the document first compares "within" its
* collected set of fields, finding any conflicts between every pair of
* overlapping fields.
* Note: This is the *only time* that a the fields "within" a set are compared
* to each other. After this only fields "between" sets are compared.
*
* B) Also, if any fragment is referenced in a selection set, then a
* comparison is made "between" the original set of fields and the
* referenced fragment.
*
* C) Also, if multiple fragments are referenced, then comparisons
* are made "between" each referenced fragment.
*
* D) When comparing "between" a set of fields and a referenced fragment, first
* a comparison is made between each field in the original set of fields and
* each field in the the referenced set of fields.
*
* E) Also, if any fragment is referenced in the referenced selection set,
* then a comparison is made "between" the original set of fields and the
* referenced fragment (recursively referring to step D).
*
* F) When comparing "between" two fragments, first a comparison is made between
* each field in the first referenced set of fields and each field in the the
* second referenced set of fields.
*
* G) Also, any fragments referenced by the first must be compared to the
* second, and any fragments referenced by the second must be compared to the
* first (recursively referring to step F).
*
* H) When comparing two fields, if both have selection sets, then a comparison
* is made "between" both selection sets, first comparing the set of fields in
* the first selection set with the set of fields in the second.
*
* I) Also, if any fragment is referenced in either selection set, then a
* comparison is made "between" the other set of fields and the
* referenced fragment.
*
* J) Also, if two fragments are referenced in both selection sets, then a
* comparison is made "between" the two fragments.
*
*/
m := &overlappingFieldsCanBeMergedManager{
comparedFragmentPairs: pairSet{data: make(map[string]map[string]bool)},
}
observers.OnOperation(func(walker *Walker, operation *ast.OperationDefinition) {
m.walker = walker
conflicts := m.findConflictsWithinSelectionSet(operation.SelectionSet)
for _, conflict := range conflicts {
conflict.addFieldsConflictMessage(addError)
}
})
observers.OnField(func(walker *Walker, field *ast.Field) {
if walker.CurrentOperation == nil {
// When checking both Operation and Fragment, errors are duplicated when processing FragmentDefinition referenced from Operation
return
}
m.walker = walker
conflicts := m.findConflictsWithinSelectionSet(field.SelectionSet)
for _, conflict := range conflicts {
conflict.addFieldsConflictMessage(addError)
}
})
observers.OnInlineFragment(func(walker *Walker, inlineFragment *ast.InlineFragment) {
m.walker = walker
conflicts := m.findConflictsWithinSelectionSet(inlineFragment.SelectionSet)
for _, conflict := range conflicts {
conflict.addFieldsConflictMessage(addError)
}
})
observers.OnFragment(func(walker *Walker, fragment *ast.FragmentDefinition) {
m.walker = walker
conflicts := m.findConflictsWithinSelectionSet(fragment.SelectionSet)
for _, conflict := range conflicts {
conflict.addFieldsConflictMessage(addError)
}
})
})
}
type pairSet struct {
data map[string]map[string]bool
}
func (pairSet *pairSet) Add(a *ast.FragmentSpread, b *ast.FragmentSpread, areMutuallyExclusive bool) {
add := func(a *ast.FragmentSpread, b *ast.FragmentSpread) {
m := pairSet.data[a.Name]
if m == nil {
m = make(map[string]bool)
pairSet.data[a.Name] = m
}
m[b.Name] = areMutuallyExclusive
}
add(a, b)
add(b, a)
}
func (pairSet *pairSet) Has(a *ast.FragmentSpread, b *ast.FragmentSpread, areMutuallyExclusive bool) bool {
am, ok := pairSet.data[a.Name]
if !ok {
return false
}
result, ok := am[b.Name]
if !ok {
return false
}
// areMutuallyExclusive being false is a superset of being true,
// hence if we want to know if this PairSet "has" these two with no
// exclusivity, we have to ensure it was added as such.
if !areMutuallyExclusive {
return !result
}
return true
}
type sequentialFieldsMap struct {
// We can't use map[string][]*ast.Field. because map is not stable...
seq []string
data map[string][]*ast.Field
}
type fieldIterateEntry struct {
ResponseName string
Fields []*ast.Field
}
func (m *sequentialFieldsMap) Push(responseName string, field *ast.Field) {
fields, ok := m.data[responseName]
if !ok {
m.seq = append(m.seq, responseName)
}
fields = append(fields, field)
m.data[responseName] = fields
}
func (m *sequentialFieldsMap) Get(responseName string) ([]*ast.Field, bool) {
fields, ok := m.data[responseName]
return fields, ok
}
func (m *sequentialFieldsMap) Iterator() [][]*ast.Field {
fieldsList := make([][]*ast.Field, 0, len(m.seq))
for _, responseName := range m.seq {
fields := m.data[responseName]
fieldsList = append(fieldsList, fields)
}
return fieldsList
}
func (m *sequentialFieldsMap) KeyValueIterator() []*fieldIterateEntry {
fieldEntriesList := make([]*fieldIterateEntry, 0, len(m.seq))
for _, responseName := range m.seq {
fields := m.data[responseName]
fieldEntriesList = append(fieldEntriesList, &fieldIterateEntry{
ResponseName: responseName,
Fields: fields,
})
}
return fieldEntriesList
}
type conflictMessageContainer struct {
Conflicts []*ConflictMessage
}
type ConflictMessage struct {
Message string
ResponseName string
Names []string
SubMessage []*ConflictMessage
Position *ast.Position
}
func (m *ConflictMessage) String(buf *bytes.Buffer) {
if len(m.SubMessage) == 0 {
buf.WriteString(m.Message)
return
}
for idx, subMessage := range m.SubMessage {
buf.WriteString(`subfields "`)
buf.WriteString(subMessage.ResponseName)
buf.WriteString(`" conflict because `)
subMessage.String(buf)
if idx != len(m.SubMessage)-1 {
buf.WriteString(" and ")
}
}
}
func (m *ConflictMessage) addFieldsConflictMessage(addError AddErrFunc) {
var buf bytes.Buffer
m.String(&buf)
addError(
Message(`Fields "%s" conflict because %s. Use different aliases on the fields to fetch both if this was intentional.`, m.ResponseName, buf.String()),
At(m.Position),
)
}
type overlappingFieldsCanBeMergedManager struct {
walker *Walker
// per walker
comparedFragmentPairs pairSet
// cachedFieldsAndFragmentNames interface{}
// per selectionSet
comparedFragments map[string]bool
}
func (m *overlappingFieldsCanBeMergedManager) findConflictsWithinSelectionSet(selectionSet ast.SelectionSet) []*ConflictMessage {
if len(selectionSet) == 0 {
return nil
}
fieldsMap, fragmentSpreads := getFieldsAndFragmentNames(selectionSet)
var conflicts conflictMessageContainer
// (A) Find find all conflicts "within" the fieldMap of this selection set.
// Note: this is the *only place* `collectConflictsWithin` is called.
m.collectConflictsWithin(&conflicts, fieldsMap)
m.comparedFragments = make(map[string]bool)
for idx, fragmentSpreadA := range fragmentSpreads {
// (B) Then collect conflicts between these fieldMap and those represented by
// each spread fragment name found.
m.collectConflictsBetweenFieldsAndFragment(&conflicts, false, fieldsMap, fragmentSpreadA)
for _, fragmentSpreadB := range fragmentSpreads[idx+1:] {
// (C) Then compare this fragment with all other fragments found in this
// selection set to collect conflicts between fragments spread together.
// This compares each item in the list of fragment names to every other
// item in that same list (except for itself).
m.collectConflictsBetweenFragments(&conflicts, false, fragmentSpreadA, fragmentSpreadB)
}
}
return conflicts.Conflicts
}
func (m *overlappingFieldsCanBeMergedManager) collectConflictsBetweenFieldsAndFragment(conflicts *conflictMessageContainer, areMutuallyExclusive bool, fieldsMap *sequentialFieldsMap, fragmentSpread *ast.FragmentSpread) {
if m.comparedFragments[fragmentSpread.Name] {
return
}
m.comparedFragments[fragmentSpread.Name] = true
if fragmentSpread.Definition == nil {
return
}
fieldsMapB, fragmentSpreads := getFieldsAndFragmentNames(fragmentSpread.Definition.SelectionSet)
// Do not compare a fragment's fieldMap to itself.
if reflect.DeepEqual(fieldsMap, fieldsMapB) {
return
}
// (D) First collect any conflicts between the provided collection of fields
// and the collection of fields represented by the given fragment.
m.collectConflictsBetween(conflicts, areMutuallyExclusive, fieldsMap, fieldsMapB)
// (E) Then collect any conflicts between the provided collection of fields
// and any fragment names found in the given fragment.
baseFragmentSpread := fragmentSpread
for _, fragmentSpread := range fragmentSpreads {
if fragmentSpread.Name == baseFragmentSpread.Name {
continue
}
m.collectConflictsBetweenFieldsAndFragment(conflicts, areMutuallyExclusive, fieldsMap, fragmentSpread)
}
}
func (m *overlappingFieldsCanBeMergedManager) collectConflictsBetweenFragments(conflicts *conflictMessageContainer, areMutuallyExclusive bool, fragmentSpreadA *ast.FragmentSpread, fragmentSpreadB *ast.FragmentSpread) {
var check func(fragmentSpreadA *ast.FragmentSpread, fragmentSpreadB *ast.FragmentSpread)
check = func(fragmentSpreadA *ast.FragmentSpread, fragmentSpreadB *ast.FragmentSpread) {
if fragmentSpreadA.Name == fragmentSpreadB.Name {
return
}
if m.comparedFragmentPairs.Has(fragmentSpreadA, fragmentSpreadB, areMutuallyExclusive) {
return
}
m.comparedFragmentPairs.Add(fragmentSpreadA, fragmentSpreadB, areMutuallyExclusive)
if fragmentSpreadA.Definition == nil {
return
}
if fragmentSpreadB.Definition == nil {
return
}
fieldsMapA, fragmentSpreadsA := getFieldsAndFragmentNames(fragmentSpreadA.Definition.SelectionSet)
fieldsMapB, fragmentSpreadsB := getFieldsAndFragmentNames(fragmentSpreadB.Definition.SelectionSet)
// (F) First, collect all conflicts between these two collections of fields
// (not including any nested fragments).
m.collectConflictsBetween(conflicts, areMutuallyExclusive, fieldsMapA, fieldsMapB)
// (G) Then collect conflicts between the first fragment and any nested
// fragments spread in the second fragment.
for _, fragmentSpread := range fragmentSpreadsB {
check(fragmentSpreadA, fragmentSpread)
}
// (G) Then collect conflicts between the second fragment and any nested
// fragments spread in the first fragment.
for _, fragmentSpread := range fragmentSpreadsA {
check(fragmentSpread, fragmentSpreadB)
}
}
check(fragmentSpreadA, fragmentSpreadB)
}
func (m *overlappingFieldsCanBeMergedManager) findConflictsBetweenSubSelectionSets(areMutuallyExclusive bool, selectionSetA ast.SelectionSet, selectionSetB ast.SelectionSet) *conflictMessageContainer {
var conflicts conflictMessageContainer
fieldsMapA, fragmentSpreadsA := getFieldsAndFragmentNames(selectionSetA)
fieldsMapB, fragmentSpreadsB := getFieldsAndFragmentNames(selectionSetB)
// (H) First, collect all conflicts between these two collections of field.
m.collectConflictsBetween(&conflicts, areMutuallyExclusive, fieldsMapA, fieldsMapB)
// (I) Then collect conflicts between the first collection of fields and
// those referenced by each fragment name associated with the second.
for _, fragmentSpread := range fragmentSpreadsB {
m.comparedFragments = make(map[string]bool)
m.collectConflictsBetweenFieldsAndFragment(&conflicts, areMutuallyExclusive, fieldsMapA, fragmentSpread)
}
// (I) Then collect conflicts between the second collection of fields and
// those referenced by each fragment name associated with the first.
for _, fragmentSpread := range fragmentSpreadsA {
m.comparedFragments = make(map[string]bool)
m.collectConflictsBetweenFieldsAndFragment(&conflicts, areMutuallyExclusive, fieldsMapB, fragmentSpread)
}
// (J) Also collect conflicts between any fragment names by the first and
// fragment names by the second. This compares each item in the first set of
// names to each item in the second set of names.
for _, fragmentSpreadA := range fragmentSpreadsA {
for _, fragmentSpreadB := range fragmentSpreadsB {
m.collectConflictsBetweenFragments(&conflicts, areMutuallyExclusive, fragmentSpreadA, fragmentSpreadB)
}
}
if len(conflicts.Conflicts) == 0 {
return nil
}
return &conflicts
}
func (m *overlappingFieldsCanBeMergedManager) collectConflictsWithin(conflicts *conflictMessageContainer, fieldsMap *sequentialFieldsMap) {
for _, fields := range fieldsMap.Iterator() {
for idx, fieldA := range fields {
for _, fieldB := range fields[idx+1:] {
conflict := m.findConflict(false, fieldA, fieldB)
if conflict != nil {
conflicts.Conflicts = append(conflicts.Conflicts, conflict)
}
}
}
}
}
func (m *overlappingFieldsCanBeMergedManager) collectConflictsBetween(conflicts *conflictMessageContainer, parentFieldsAreMutuallyExclusive bool, fieldsMapA *sequentialFieldsMap, fieldsMapB *sequentialFieldsMap) {
for _, fieldsEntryA := range fieldsMapA.KeyValueIterator() {
fieldsB, ok := fieldsMapB.Get(fieldsEntryA.ResponseName)
if !ok {
continue
}
for _, fieldA := range fieldsEntryA.Fields {
for _, fieldB := range fieldsB {
conflict := m.findConflict(parentFieldsAreMutuallyExclusive, fieldA, fieldB)
if conflict != nil {
conflicts.Conflicts = append(conflicts.Conflicts, conflict)
}
}
}
}
}
func (m *overlappingFieldsCanBeMergedManager) findConflict(parentFieldsAreMutuallyExclusive bool, fieldA *ast.Field, fieldB *ast.Field) *ConflictMessage {
if fieldA.ObjectDefinition == nil || fieldB.ObjectDefinition == nil {
return nil
}
areMutuallyExclusive := parentFieldsAreMutuallyExclusive
if !areMutuallyExclusive {
tmp := fieldA.ObjectDefinition.Name != fieldB.ObjectDefinition.Name
tmp = tmp && fieldA.ObjectDefinition.Kind == ast.Object
tmp = tmp && fieldB.ObjectDefinition.Kind == ast.Object
tmp = tmp && fieldA.Definition != nil && fieldB.Definition != nil
areMutuallyExclusive = tmp
}
fieldNameA := fieldA.Name
if fieldA.Alias != "" {
fieldNameA = fieldA.Alias
}
if !areMutuallyExclusive {
// Two aliases must refer to the same field.
if fieldA.Name != fieldB.Name {
return &ConflictMessage{
ResponseName: fieldNameA,
Message: fmt.Sprintf(`"%s" and "%s" are different fields`, fieldA.Name, fieldB.Name),
Position: fieldB.Position,
}
}
// Two field calls must have the same arguments.
if !sameArguments(fieldA.Arguments, fieldB.Arguments) {
return &ConflictMessage{
ResponseName: fieldNameA,
Message: "they have differing arguments",
Position: fieldB.Position,
}
}
}
if fieldA.Definition != nil && fieldB.Definition != nil && doTypesConflict(m.walker, fieldA.Definition.Type, fieldB.Definition.Type) {
return &ConflictMessage{
ResponseName: fieldNameA,
Message: fmt.Sprintf(`they return conflicting types "%s" and "%s"`, fieldA.Definition.Type.String(), fieldB.Definition.Type.String()),
Position: fieldB.Position,
}
}
// Collect and compare sub-fields. Use the same "visited fragment names" list
// for both collections so fields in a fragment reference are never
// compared to themselves.
conflicts := m.findConflictsBetweenSubSelectionSets(areMutuallyExclusive, fieldA.SelectionSet, fieldB.SelectionSet)
if conflicts == nil {
return nil
}
return &ConflictMessage{
ResponseName: fieldNameA,
SubMessage: conflicts.Conflicts,
Position: fieldB.Position,
}
}
func sameArguments(args1 []*ast.Argument, args2 []*ast.Argument) bool {
if len(args1) != len(args2) {
return false
}
for _, arg1 := range args1 {
var matched bool
for _, arg2 := range args2 {
if arg1.Name == arg2.Name && sameValue(arg1.Value, arg2.Value) {
matched = true
break
}
}
if !matched {
return false
}
}
return true
}
func sameValue(value1 *ast.Value, value2 *ast.Value) bool {
if value1.Kind != value2.Kind {
return false
}
if value1.Raw != value2.Raw {
return false
}
return true
}
func doTypesConflict(walker *Walker, type1 *ast.Type, type2 *ast.Type) bool {
if type1.Elem != nil {
if type2.Elem != nil {
return doTypesConflict(walker, type1.Elem, type2.Elem)
}
return true
}
if type2.Elem != nil {
return true
}
if type1.NonNull && !type2.NonNull {
return true
}
if !type1.NonNull && type2.NonNull {
return true
}
t1 := walker.Schema.Types[type1.NamedType]
t2 := walker.Schema.Types[type2.NamedType]
if (t1.Kind == ast.Scalar || t1.Kind == ast.Enum) && (t2.Kind == ast.Scalar || t2.Kind == ast.Enum) {
return t1.Name != t2.Name
}
return false
}
func getFieldsAndFragmentNames(selectionSet ast.SelectionSet) (*sequentialFieldsMap, []*ast.FragmentSpread) {
fieldsMap := sequentialFieldsMap{
data: make(map[string][]*ast.Field),
}
var fragmentSpreads []*ast.FragmentSpread
var walk func(selectionSet ast.SelectionSet)
walk = func(selectionSet ast.SelectionSet) {
for _, selection := range selectionSet {
switch selection := selection.(type) {
case *ast.Field:
responseName := selection.Name
if selection.Alias != "" {
responseName = selection.Alias
}
fieldsMap.Push(responseName, selection)
case *ast.InlineFragment:
walk(selection.SelectionSet)
case *ast.FragmentSpread:
fragmentSpreads = append(fragmentSpreads, selection)
}
}
}
walk(selectionSet)
return &fieldsMap, fragmentSpreads
}
|