1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
|
package cose_test
import (
"bytes"
"crypto"
"crypto/ecdsa"
"crypto/elliptic"
"crypto/rsa"
_ "crypto/sha256"
_ "crypto/sha512"
"encoding/base64"
"encoding/hex"
"encoding/json"
"errors"
"math/big"
"os"
"path/filepath"
"strings"
"testing"
"github.com/fxamacker/cbor/v2"
"github.com/veraison/go-cose"
)
type TestCase struct {
UUID string `json:"uuid"`
Title string `json:"title"`
Description string `json:"description"`
Key Key `json:"key"`
Alg string `json:"alg"`
Sign1 *Sign1 `json:"sign1::sign"`
Verify1 *Verify1 `json:"sign1::verify"`
}
type Key map[string]string
type Sign1 struct {
Payload string `json:"payload"`
ProtectedHeaders *CBOR `json:"protectedHeaders"`
UnprotectedHeaders *CBOR `json:"unprotectedHeaders"`
External string `json:"external"`
Detached bool `json:"detached"`
TBS CBOR `json:"tbsHex"`
Output CBOR `json:"expectedOutput"`
OutputLength int `json:"fixedOutputLength"`
}
type Verify1 struct {
TaggedCOSESign1 CBOR `json:"taggedCOSESign1"`
External string `json:"external"`
Verify bool `json:"shouldVerify"`
}
type CBOR struct {
CBORHex string `json:"cborHex"`
CBORDiag string `json:"cborDiag"`
}
// Conformance samples are taken from
// https://github.com/gluecose/test-vectors.
var testCases = []struct {
name string
deterministic bool
err string
skip bool
}{
{name: "sign1-sign-0000"},
{name: "sign1-sign-0001"},
{name: "sign1-sign-0002"},
{name: "sign1-sign-0003"},
{name: "sign1-sign-0004", deterministic: true},
{name: "sign1-sign-0005", deterministic: true},
{name: "sign1-sign-0006", deterministic: true},
{name: "sign1-verify-0000"},
{name: "sign1-verify-0001"},
{name: "sign1-verify-0002"},
{name: "sign1-verify-0003"},
{name: "sign1-verify-0004"},
{name: "sign1-verify-0005"},
{name: "sign1-verify-0006"},
{name: "sign1-verify-negative-0000", err: "cbor: invalid protected header: cbor: require bstr type"},
{name: "sign1-verify-negative-0001", err: "cbor: invalid protected header: cbor: protected header: require map type"},
{name: "sign1-verify-negative-0002", err: "cbor: invalid protected header: cbor: found duplicate map key \"1\" at map element index 1"},
{name: "sign1-verify-negative-0003", err: "cbor: invalid unprotected header: cbor: found duplicate map key \"4\" at map element index 1"},
}
func TestConformance(t *testing.T) {
for _, tt := range testCases {
t.Run(tt.name, func(t *testing.T) {
if tt.skip {
t.SkipNow()
}
data, err := os.ReadFile(filepath.Join("testdata", tt.name+".json"))
if err != nil {
t.Fatal(err)
}
var tc TestCase
err = json.Unmarshal(data, &tc)
if err != nil {
t.Fatal(err)
}
if tc.Sign1 != nil {
testSign1(t, &tc, tt.deterministic)
} else if tc.Verify1 != nil {
testVerify1(t, &tc, tt.err)
} else {
t.Fatal("test case not supported")
}
})
}
}
func testVerify1(t *testing.T, tc *TestCase, wantErr string) {
var err error
defer func() {
if tc.Verify1.Verify && err != nil {
t.Fatal(err)
} else if !tc.Verify1.Verify {
if err == nil {
t.Fatal("Verify1 should have failed")
}
if wantErr != "" {
if got := err.Error(); !strings.Contains(got, wantErr) {
t.Fatalf("error mismatch; want %q, got %q", wantErr, got)
}
}
}
}()
var verifier cose.Verifier
_, verifier, err = getSigner(tc, false)
if err != nil {
return
}
var sigMsg cose.Sign1Message
err = sigMsg.UnmarshalCBOR(mustHexToBytes(tc.Verify1.TaggedCOSESign1.CBORHex))
if err != nil {
return
}
var external []byte
if tc.Verify1.External != "" {
external = mustHexToBytes(tc.Verify1.External)
}
err = sigMsg.Verify(external, verifier)
if tc.Verify1.Verify && err != nil {
t.Fatal(err)
} else if !tc.Verify1.Verify && err == nil {
t.Fatal("Verify1 should have failed")
}
}
func testSign1(t *testing.T, tc *TestCase, deterministic bool) {
signer, verifier, err := getSigner(tc, true)
if err != nil {
t.Fatal(err)
}
sig := tc.Sign1
sigMsg := cose.NewSign1Message()
sigMsg.Payload = mustHexToBytes(sig.Payload)
sigMsg.Headers, err = decodeHeaders(mustHexToBytes(sig.ProtectedHeaders.CBORHex), mustHexToBytes(sig.UnprotectedHeaders.CBORHex))
if err != nil {
t.Fatal(err)
}
var external []byte
if sig.External != "" {
external = mustHexToBytes(sig.External)
}
err = sigMsg.Sign(new(zeroSource), external, signer)
if err != nil {
t.Fatal(err)
}
err = sigMsg.Verify(external, verifier)
if err != nil {
t.Fatal(err)
}
got, err := sigMsg.MarshalCBOR()
if err != nil {
t.Fatal(err)
}
want := mustHexToBytes(sig.Output.CBORHex)
if !deterministic {
got = got[:sig.OutputLength]
want = want[:sig.OutputLength]
}
if !bytes.Equal(want, got) {
t.Fatalf("unexpected output:\nwant: %x\n got: %x", want, got)
}
}
func getSigner(tc *TestCase, private bool) (cose.Signer, cose.Verifier, error) {
pkey, err := getKey(tc.Key, private)
if err != nil {
return nil, nil, err
}
alg := mustNameToAlg(tc.Alg)
signer, err := cose.NewSigner(alg, pkey)
if err != nil {
return nil, nil, err
}
verifier, err := cose.NewVerifier(alg, pkey.Public())
if err != nil {
return nil, nil, err
}
return signer, verifier, nil
}
func getKey(key Key, private bool) (crypto.Signer, error) {
switch key["kty"] {
case "RSA":
pkey := &rsa.PrivateKey{
PublicKey: rsa.PublicKey{
N: mustBase64ToBigInt(key["n"]),
E: mustBase64ToInt(key["e"]),
},
}
if private {
pkey.D = mustBase64ToBigInt(key["d"])
pkey.Primes = []*big.Int{mustBase64ToBigInt(key["p"]), mustBase64ToBigInt(key["q"])}
pkey.Precomputed = rsa.PrecomputedValues{
Dp: mustBase64ToBigInt(key["dp"]),
Dq: mustBase64ToBigInt(key["dq"]),
Qinv: mustBase64ToBigInt(key["qi"]),
CRTValues: make([]rsa.CRTValue, 0),
}
}
return pkey, nil
case "EC":
var c elliptic.Curve
switch key["crv"] {
case "P-224":
c = elliptic.P224()
case "P-256":
c = elliptic.P256()
case "P-384":
c = elliptic.P384()
case "P-521":
c = elliptic.P521()
default:
return nil, errors.New("unsupported EC curve: " + key["crv"])
}
pkey := &ecdsa.PrivateKey{
PublicKey: ecdsa.PublicKey{
X: mustBase64ToBigInt(key["x"]),
Y: mustBase64ToBigInt(key["y"]),
Curve: c,
},
}
if private {
pkey.D = mustBase64ToBigInt(key["d"])
}
return pkey, nil
}
return nil, errors.New("unsupported key type: " + key["kty"])
}
// zeroSource is an io.Reader that returns an unlimited number of zero bytes.
type zeroSource struct{}
func (zeroSource) Read(b []byte) (n int, err error) {
for i := range b {
b[i] = 0
}
return len(b), nil
}
var encMode, _ = cbor.CanonicalEncOptions().EncMode()
func decodeHeaders(protected, unprotected []byte) (hdr cose.Headers, err error) {
// test-vectors encodes the protected header as a map instead of a map wrapped in a bstr.
// UnmarshalFromRaw expects the former, so wrap the map here before passing it to UnmarshalFromRaw.
hdr.RawProtected, err = encMode.Marshal(protected)
if err != nil {
return
}
hdr.RawUnprotected = unprotected
err = hdr.UnmarshalFromRaw()
return hdr, err
}
func mustBase64ToInt(s string) int {
return int(mustBase64ToBigInt(s).Int64())
}
func mustHexToBytes(s string) []byte {
b, err := hex.DecodeString(s)
if err != nil {
panic(err)
}
return b
}
func mustBase64ToBigInt(s string) *big.Int {
val, err := base64.RawURLEncoding.DecodeString(s)
if err != nil {
panic(err)
}
return new(big.Int).SetBytes(val)
}
// mustNameToAlg returns the algorithm associated to name.
// The content of name is not defined in any RFC,
// but it's what the test cases use to identify algorithms.
func mustNameToAlg(name string) cose.Algorithm {
switch name {
case "PS256":
return cose.AlgorithmPS256
case "PS384":
return cose.AlgorithmPS384
case "PS512":
return cose.AlgorithmPS512
case "ES256":
return cose.AlgorithmES256
case "ES384":
return cose.AlgorithmES384
case "ES512":
return cose.AlgorithmES512
}
panic("algorithm name not found: " + name)
}
|