1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
|
package cose
import (
"crypto/ed25519"
"crypto/rand"
"reflect"
"testing"
)
func generateTestEd25519Key(t *testing.T) (ed25519.PublicKey, ed25519.PrivateKey) {
vk, sk, err := ed25519.GenerateKey(rand.Reader)
if err != nil {
t.Fatalf("ed25519.GenerateKey() error = %v", err)
}
return vk, sk
}
func Test_ed25519Signer(t *testing.T) {
// generate key
alg := AlgorithmEd25519
_, key := generateTestEd25519Key(t)
// set up signer
signer, err := NewSigner(alg, key)
if err != nil {
t.Fatalf("NewSigner() error = %v", err)
}
if _, ok := signer.(*ed25519Signer); !ok {
t.Fatalf("NewSigner() type = %v, want *ed25519Signer", reflect.TypeOf(signer))
}
if got := signer.Algorithm(); got != alg {
t.Fatalf("Algorithm() = %v, want %v", got, alg)
}
// sign / verify round trip
// see also conformance_test.go for strict tests.
content := []byte("hello world")
sig, err := signer.Sign(rand.Reader, content)
if err != nil {
t.Fatalf("Sign() error = %v", err)
}
verifier, err := NewVerifier(alg, key.Public())
if err != nil {
t.Fatalf("NewVerifier() error = %v", err)
}
if err := verifier.Verify(content, sig); err != nil {
t.Fatalf("Verifier.Verify() error = %v", err)
}
}
func Test_ed25519Verifier_Verify_Success(t *testing.T) {
// generate key
alg := AlgorithmEd25519
_, key := generateTestEd25519Key(t)
// generate a valid signature
content, sig := signTestData(t, alg, key)
// set up verifier
verifier, err := NewVerifier(alg, key.Public())
if err != nil {
t.Fatalf("NewVerifier() error = %v", err)
}
if _, ok := verifier.(*ed25519Verifier); !ok {
t.Fatalf("NewVerifier() type = %v, want *ed25519Verifier", reflect.TypeOf(verifier))
}
if got := verifier.Algorithm(); got != alg {
t.Fatalf("Algorithm() = %v, want %v", got, alg)
}
// verify round trip
if err := verifier.Verify(content, sig); err != nil {
t.Fatalf("ed25519Verifier.Verify() error = %v", err)
}
}
func Test_ed25519Verifier_Verify_KeyMismatch(t *testing.T) {
// generate key
alg := AlgorithmEd25519
_, key := generateTestEd25519Key(t)
// generate a valid signature
content, sig := signTestData(t, alg, key)
// set up verifier with a different key / new key
vk, _ := generateTestEd25519Key(t)
verifier := &ed25519Verifier{
key: vk,
}
// verification should fail on key mismatch
if err := verifier.Verify(content, sig); err != ErrVerification {
t.Fatalf("ed25519Verifier.Verify() error = %v, wantErr %v", err, ErrVerification)
}
}
func Test_ed25519Verifier_Verify_InvalidSignature(t *testing.T) {
// generate key
alg := AlgorithmEd25519
vk, sk := generateTestEd25519Key(t)
// generate a valid signature with a tampered one
content, sig := signTestData(t, alg, sk)
tamperedSig := make([]byte, len(sig))
copy(tamperedSig, sig)
tamperedSig[0]++
// set up verifier with a different algorithm
verifier := &ed25519Verifier{
key: vk,
}
// verification should fail on invalid signature
tests := []struct {
name string
signature []byte
}{
{
name: "nil signature",
signature: nil,
},
{
name: "empty signature",
signature: []byte{},
},
{
name: "incomplete signature",
signature: sig[:len(sig)-2],
},
{
name: "tampered signature",
signature: tamperedSig,
},
{
name: "too many signature bytes",
signature: append(sig, 0),
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
if err := verifier.Verify(content, tt.signature); err != ErrVerification {
t.Errorf("ed25519Verifier.Verify() error = %v, wantErr %v", err, ErrVerification)
}
})
}
}
|