File: key.go

package info (click to toggle)
golang-github-veraison-go-cose 1.2.1-2
  • links: PTS, VCS
  • area: main
  • in suites: experimental, forky, sid, trixie
  • size: 1,852 kB
  • sloc: sh: 8; makefile: 5
file content (802 lines) | stat: -rw-r--r-- 19,343 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
package cose

import (
	"crypto"
	"crypto/ecdsa"
	"crypto/ed25519"
	"crypto/elliptic"
	"errors"
	"fmt"
	"math/big"
	"strconv"

	cbor "github.com/fxamacker/cbor/v2"
)

const (
	// An inviald key_op value
	KeyOpInvalid KeyOp = 0

	// The key is used to create signatures. Requires private key fields.
	KeyOpSign KeyOp = 1

	// The key is used for verification of signatures.
	KeyOpVerify KeyOp = 2

	// The key is used for key transport encryption.
	KeyOpEncrypt KeyOp = 3

	// The key is used for key transport decryption. Requires private key fields.
	KeyOpDecrypt KeyOp = 4

	// The key is used for key wrap encryption.
	KeyOpWrapKey KeyOp = 5

	// The key is used for key wrap decryption.
	KeyOpUnwrapKey KeyOp = 6

	// The key is used for deriving keys. Requires private key fields.
	KeyOpDeriveKey KeyOp = 7

	// The key is used for deriving bits not to be used as a key. Requires
	// private key fields.
	KeyOpDeriveBits KeyOp = 8

	// The key is used for creating MACs.
	KeyOpMACCreate KeyOp = 9

	// The key is used for validating MACs.
	KeyOpMACVerify KeyOp = 10
)

// KeyOp represents a key_ops value used to restrict purposes for which a Key
// may be used.
type KeyOp int64

// KeyOpFromString returns the KeyOp corresponding to the specified name.
// The values are taken from https://www.rfc-editor.org/rfc/rfc7517#section-4.3
func KeyOpFromString(val string) (KeyOp, error) {
	switch val {
	case "sign":
		return KeyOpSign, nil
	case "verify":
		return KeyOpVerify, nil
	case "encrypt":
		return KeyOpEncrypt, nil
	case "decrypt":
		return KeyOpDecrypt, nil
	case "wrapKey":
		return KeyOpWrapKey, nil
	case "unwrapKey":
		return KeyOpUnwrapKey, nil
	case "deriveKey":
		return KeyOpDeriveKey, nil
	case "deriveBits":
		return KeyOpDeriveBits, nil
	default:
		return KeyOpInvalid, fmt.Errorf("unknown key_ops value %q", val)
	}
}

// String returns a string representation of the KeyType. Note does not
// represent a valid value  of the corresponding serialized entry, and must not
// be used as such. (The values returned _mostly_ correspond to those accepted
// by KeyOpFromString, except for MAC create/verify, which are not defined by
// RFC7517).
func (ko KeyOp) String() string {
	switch ko {
	case KeyOpSign:
		return "sign"
	case KeyOpVerify:
		return "verify"
	case KeyOpEncrypt:
		return "encrypt"
	case KeyOpDecrypt:
		return "decrypt"
	case KeyOpWrapKey:
		return "wrapKey"
	case KeyOpUnwrapKey:
		return "unwrapKey"
	case KeyOpDeriveKey:
		return "deriveKey"
	case KeyOpDeriveBits:
		return "deriveBits"
	case KeyOpMACCreate:
		return "MAC create"
	case KeyOpMACVerify:
		return "MAC verify"
	default:
		return "unknown key_op value " + strconv.Itoa(int(ko))
	}
}

// IsSupported returnns true if the specified value is represents one of the
// key_ops defined in
// https://www.rfc-editor.org/rfc/rfc9052.html#name-cose-key-common-parameters
func (ko KeyOp) IsSupported() bool {
	return ko >= 1 && ko <= 10
}

// MarshalCBOR marshals the KeyOp as a CBOR int.
func (ko KeyOp) MarshalCBOR() ([]byte, error) {
	return encMode.Marshal(int64(ko))
}

// UnmarshalCBOR populates the KeyOp from the provided CBOR value (must be int
// or tstr).
func (ko *KeyOp) UnmarshalCBOR(data []byte) error {
	var raw intOrStr

	if err := raw.UnmarshalCBOR(data); err != nil {
		return fmt.Errorf("invalid key_ops value %w", err)
	}

	if raw.IsString() {
		v, err := KeyOpFromString(raw.String())
		if err != nil {
			return err
		}

		*ko = v
	} else {
		v := raw.Int()
		*ko = KeyOp(v)

		if !ko.IsSupported() {
			return fmt.Errorf("unknown key_ops value %d", v)
		}
	}

	return nil
}

// KeyType identifies the family of keys represented by the associated Key.
// This determines which files within the Key must be set in order for it to be
// valid.
type KeyType int64

const (
	// Invlaid key type
	KeyTypeInvalid KeyType = 0
	// Octet Key Pair
	KeyTypeOKP KeyType = 1
	// Elliptic Curve Keys w/ x- and y-coordinate pair
	KeyTypeEC2 KeyType = 2
	// Symmetric Keys
	KeyTypeSymmetric KeyType = 4
)

// String returns a string representation of the KeyType. Note does not
// represent a valid value  of the corresponding serialized entry, and must
// not be used as such.
func (kt KeyType) String() string {
	switch kt {
	case KeyTypeOKP:
		return "OKP"
	case KeyTypeEC2:
		return "EC2"
	case KeyTypeSymmetric:
		return "Symmetric"
	default:
		return "unknown key type value " + strconv.Itoa(int(kt))
	}
}

// MarshalCBOR marshals the KeyType as a CBOR int.
func (kt KeyType) MarshalCBOR() ([]byte, error) {
	return encMode.Marshal(int(kt))
}

// UnmarshalCBOR populates the KeyType from the provided CBOR value (must be
// int or tstr).
func (kt *KeyType) UnmarshalCBOR(data []byte) error {
	var raw intOrStr

	if err := raw.UnmarshalCBOR(data); err != nil {
		return fmt.Errorf("invalid key type value: %w", err)
	}

	if raw.IsString() {
		v, err := keyTypeFromString(raw.String())

		if err != nil {
			return err
		}

		*kt = v
	} else {
		v := raw.Int()

		if v == 0 {
			// 0  is reserved, and so can never be valid
			return fmt.Errorf("invalid key type value 0")
		}

		if v > 4 || v < 0 || v == 3 {
			return fmt.Errorf("unknown key type value %d", v)
		}

		*kt = KeyType(v)
	}

	return nil
}

// NOTE: there are currently no registered string key type values.
func keyTypeFromString(v string) (KeyType, error) {
	return KeyTypeInvalid, fmt.Errorf("unknown key type value %q", v)
}

const (

	// Invalid/unrecognised curve
	CurveInvalid Curve = 0

	// NIST P-256 also known as secp256r1
	CurveP256 Curve = 1

	// NIST P-384 also known as secp384r1
	CurveP384 Curve = 2

	// NIST P-521 also known as secp521r1
	CurveP521 Curve = 3

	// X25519 for use w/ ECDH only
	CurveX25519 Curve = 4

	// X448 for use w/ ECDH only
	CurveX448 Curve = 5

	// Ed25519 for use /w EdDSA only
	CurveEd25519 Curve = 6

	// Ed448 for use /w EdDSA only
	CurveEd448 Curve = 7
)

// Curve represents the EC2/OKP key's curve. See:
// https://datatracker.ietf.org/doc/html/rfc8152#section-13.1
type Curve int64

// String returns a string representation of the Curve. Note does not
// represent a valid value  of the corresponding serialized entry, and must
// not be used as such.
func (c Curve) String() string {
	switch c {
	case CurveP256:
		return "P-256"
	case CurveP384:
		return "P-384"
	case CurveP521:
		return "P-521"
	case CurveX25519:
		return "X25519"
	case CurveX448:
		return "X448"
	case CurveEd25519:
		return "Ed25519"
	case CurveEd448:
		return "Ed448"
	default:
		return "unknown curve value " + strconv.Itoa(int(c))
	}
}

// MarshalCBOR marshals the KeyType as a CBOR int.
func (c Curve) MarshalCBOR() ([]byte, error) {
	return encMode.Marshal(int(c))
}

// UnmarshalCBOR populates the KeyType from the provided CBOR value (must be
// int or tstr).
func (c *Curve) UnmarshalCBOR(data []byte) error {
	var raw intOrStr

	if err := raw.UnmarshalCBOR(data); err != nil {
		return fmt.Errorf("invalid curve value: %w", err)
	}

	if raw.IsString() {
		v, err := curveFromString(raw.String())

		if err != nil {
			return err
		}

		*c = v
	} else {
		v := raw.Int()

		if v < 1 || v > 7 {
			return fmt.Errorf("unknown curve value %d", v)
		}

		*c = Curve(v)
	}

	return nil
}

// NOTE: there are currently no registered string values for curves.
func curveFromString(v string) (Curve, error) {
	return CurveInvalid, fmt.Errorf("unknown curve value %q", v)
}

// Key represents a COSE_Key structure, as defined by RFC8152.
// Note: currently, this does NOT support RFC8230 (RSA algorithms).
type Key struct {
	// Common parameters. These are independent of the key type. Only
	// KeyType common parameter MUST be set.

	// KeyType identifies the family of keys for this structure, and thus,
	// which of the key-type-specific parameters need to be set.
	KeyType KeyType `cbor:"1,keyasint"`
	// KeyID is the identification value matched to the kid in the message.
	KeyID []byte `cbor:"2,keyasint,omitempty"`
	// KeyOps can be set to restrict the set of operations that the Key is used for.
	KeyOps []KeyOp `cbor:"4,keyasint,omitempty"`
	// BaseIV is the Base IV to be xor-ed with Partial IVs.
	BaseIV []byte `cbor:"5,keyasint,omitempty"`

	// Algorithm is used to restrict the algorithm that is used with the
	// key. If it is set, the application MUST verify that it matches the
	// algorithm for which the Key is being used.
	Algorithm Algorithm `cbor:"-"`
	// Curve is EC identifier -- taken form "COSE Elliptic Curves" IANA registry.
	// Populated from keyStruct.RawKeyParam when key type is EC2 or OKP.
	Curve Curve `cbor:"-"`
	// K is the key value. Populated from keyStruct.RawKeyParam when key
	// type is Symmetric.
	K []byte `cbor:"-"`

	// EC2/OKP params

	// X is the x-coordinate
	X []byte `cbor:"-2,keyasint,omitempty"`
	// Y is the y-coordinate (sign bits are not supported)
	Y []byte `cbor:"-3,keyasint,omitempty"`
	// D is the private key
	D []byte `cbor:"-4,keyasint,omitempty"`
}

// NewOKPKey returns a Key created using the provided Octet Key Pair data.
func NewOKPKey(alg Algorithm, x, d []byte) (*Key, error) {
	if alg != AlgorithmEd25519 {
		return nil, fmt.Errorf("unsupported algorithm %q", alg)
	}

	key := &Key{
		KeyType:   KeyTypeOKP,
		Algorithm: alg,
		Curve:     CurveEd25519,
		X:         x,
		D:         d,
	}
	return key, key.Validate()
}

// NewEC2Key returns a Key created using the provided elliptic curve key
// data.
func NewEC2Key(alg Algorithm, x, y, d []byte) (*Key, error) {
	var curve Curve

	switch alg {
	case AlgorithmES256:
		curve = CurveP256
	case AlgorithmES384:
		curve = CurveP384
	case AlgorithmES512:
		curve = CurveP521
	default:
		return nil, fmt.Errorf("unsupported algorithm %q", alg)
	}

	key := &Key{
		KeyType:   KeyTypeEC2,
		Algorithm: alg,
		Curve:     curve,
		X:         x,
		Y:         y,
		D:         d,
	}
	return key, key.Validate()
}

// NewSymmetricKey returns a Key created using the provided Symmetric key
// bytes.
func NewSymmetricKey(k []byte) (*Key, error) {
	key := &Key{
		KeyType: KeyTypeSymmetric,
		K:       k,
	}
	return key, key.Validate()
}

// NewKeyFromPublic returns a Key created using the provided crypto.PublicKey
// and Algorithm.
func NewKeyFromPublic(alg Algorithm, pub crypto.PublicKey) (*Key, error) {
	switch alg {
	case AlgorithmES256, AlgorithmES384, AlgorithmES512:
		vk, ok := pub.(*ecdsa.PublicKey)
		if !ok {
			return nil, fmt.Errorf("%v: %w", alg, ErrInvalidPubKey)
		}

		return NewEC2Key(alg, vk.X.Bytes(), vk.Y.Bytes(), nil)
	case AlgorithmEd25519:
		vk, ok := pub.(ed25519.PublicKey)
		if !ok {
			return nil, fmt.Errorf("%v: %w", alg, ErrInvalidPubKey)
		}

		return NewOKPKey(alg, []byte(vk), nil)
	default:
		return nil, ErrAlgorithmNotSupported
	}
}

// NewKeyFromPrivate returns a Key created using provided crypto.PrivateKey
// and Algorithm.
func NewKeyFromPrivate(alg Algorithm, priv crypto.PrivateKey) (*Key, error) {
	switch alg {
	case AlgorithmES256, AlgorithmES384, AlgorithmES512:
		sk, ok := priv.(*ecdsa.PrivateKey)
		if !ok {
			return nil, fmt.Errorf("%v: %w", alg, ErrInvalidPrivKey)
		}

		return NewEC2Key(alg, sk.X.Bytes(), sk.Y.Bytes(), sk.D.Bytes())
	case AlgorithmEd25519:
		sk, ok := priv.(ed25519.PrivateKey)
		if !ok {
			return nil, fmt.Errorf("%v: %w", alg, ErrInvalidPrivKey)
		}
		return NewOKPKey(alg, []byte(sk[32:]), []byte(sk[:32]))
	default:
		return nil, ErrAlgorithmNotSupported
	}
}

// Validate ensures that the parameters set inside the Key are internally
// consistent (e.g., that the key type is appropriate to the curve.)
func (k Key) Validate() error {
	switch k.KeyType {
	case KeyTypeEC2:
		switch k.Curve {
		case CurveP256, CurveP384, CurveP521:
			// ok
		default:
			return fmt.Errorf(
				"EC2 curve must be P-256, P-384, or P-521; found %q",
				k.Curve.String(),
			)
		}
	case KeyTypeOKP:
		switch k.Curve {
		case CurveX25519, CurveX448, CurveEd25519, CurveEd448:
			// ok
		default:
			return fmt.Errorf(
				"OKP curve must be X25519, X448, Ed25519, or Ed448; found %q",
				k.Curve.String(),
			)
		}
	case KeyTypeSymmetric:
	default:
		return errors.New(k.KeyType.String())
	}

	// If Algorithm is set, it must match the specified key parameters.
	if k.Algorithm != AlgorithmInvalid {
		expectedAlg, err := k.deriveAlgorithm()
		if err != nil {
			return err
		}

		if k.Algorithm != expectedAlg {
			return fmt.Errorf(
				"found algorithm %q (expected %q)",
				k.Algorithm.String(),
				expectedAlg.String(),
			)
		}
	}

	return nil
}

type keyalias Key

type marshaledKey struct {
	keyalias

	// RawAlgorithm contains the raw Algorithm value, this is necessary
	// because cbor library ignores omitempty on types that implement the
	// cbor.Marshaler interface.
	RawAlgorithm cbor.RawMessage `cbor:"3,keyasint,omitempty"`

	// RawKeyParam contains the raw CBOR encoded data for the label -1.
	// Depending on the KeyType this is used to populate either Curve or K
	// below.
	RawKeyParam cbor.RawMessage `cbor:"-1,keyasint,omitempty"`
}

// MarshalCBOR encodes Key into a COSE_Key object.
func (k *Key) MarshalCBOR() ([]byte, error) {
	tmp := marshaledKey{
		keyalias: keyalias(*k),
	}
	var err error

	switch k.KeyType {
	case KeyTypeSymmetric:
		if tmp.RawKeyParam, err = encMode.Marshal(k.K); err != nil {
			return nil, err
		}
	case KeyTypeEC2, KeyTypeOKP:
		if tmp.RawKeyParam, err = encMode.Marshal(k.Curve); err != nil {
			return nil, err
		}
	default:
		return nil, fmt.Errorf("invalid key type: %q", k.KeyType.String())
	}

	if k.Algorithm != AlgorithmInvalid {
		if tmp.RawAlgorithm, err = encMode.Marshal(k.Algorithm); err != nil {
			return nil, err
		}
	}

	return encMode.Marshal(tmp)
}

// UnmarshalCBOR decodes a COSE_Key object into Key.
func (k *Key) UnmarshalCBOR(data []byte) error {
	var tmp marshaledKey

	if err := decMode.Unmarshal(data, &tmp); err != nil {
		return err
	}
	*k = Key(tmp.keyalias)

	if tmp.RawAlgorithm != nil {
		if err := decMode.Unmarshal(tmp.RawAlgorithm, &k.Algorithm); err != nil {
			return err
		}
	}

	switch k.KeyType {
	case KeyTypeEC2:
		if tmp.RawKeyParam == nil {
			return errors.New("missing Curve parameter (required for EC2 key type)")
		}

		if err := decMode.Unmarshal(tmp.RawKeyParam, &k.Curve); err != nil {
			return err
		}
	case KeyTypeOKP:
		if tmp.RawKeyParam == nil {
			return errors.New("missing Curve parameter (required for OKP key type)")
		}

		if err := decMode.Unmarshal(tmp.RawKeyParam, &k.Curve); err != nil {
			return err
		}
	case KeyTypeSymmetric:
		if tmp.RawKeyParam == nil {
			return errors.New("missing K parameter (required for Symmetric key type)")
		}

		if err := decMode.Unmarshal(tmp.RawKeyParam, &k.K); err != nil {
			return err
		}
	default:
		// this should not be reachable as KeyType.UnmarshalCBOR would
		// result in an error during decMode.Unmarshal() above, if the
		// value in the data doesn't correspond to one of the above
		// types.
		return fmt.Errorf("unexpected key type %q", k.KeyType.String())
	}

	return k.Validate()
}

// PublicKey returns a crypto.PublicKey generated using Key's parameters.
func (k *Key) PublicKey() (crypto.PublicKey, error) {
	alg, err := k.deriveAlgorithm()
	if err != nil {
		return nil, err
	}

	switch alg {
	case AlgorithmES256, AlgorithmES384, AlgorithmES512:
		var curve elliptic.Curve

		switch alg {
		case AlgorithmES256:
			curve = elliptic.P256()
		case AlgorithmES384:
			curve = elliptic.P384()
		case AlgorithmES512:
			curve = elliptic.P521()
		}

		pub := &ecdsa.PublicKey{Curve: curve, X: new(big.Int), Y: new(big.Int)}
		pub.X.SetBytes(k.X)
		pub.Y.SetBytes(k.Y)

		return pub, nil
	case AlgorithmEd25519:
		return ed25519.PublicKey(k.X), nil
	default:
		return nil, ErrAlgorithmNotSupported
	}
}

// PrivateKey returns a crypto.PrivateKey generated using Key's parameters.
func (k *Key) PrivateKey() (crypto.PrivateKey, error) {
	alg, err := k.deriveAlgorithm()
	if err != nil {
		return nil, err
	}

	if len(k.D) == 0 {
		return nil, ErrNotPrivKey
	}

	switch alg {
	case AlgorithmES256, AlgorithmES384, AlgorithmES512:
		var curve elliptic.Curve

		switch alg {
		case AlgorithmES256:
			curve = elliptic.P256()
		case AlgorithmES384:
			curve = elliptic.P384()
		case AlgorithmES512:
			curve = elliptic.P521()
		}

		priv := &ecdsa.PrivateKey{
			PublicKey: ecdsa.PublicKey{Curve: curve, X: new(big.Int), Y: new(big.Int)},
			D:         new(big.Int),
		}
		priv.X.SetBytes(k.X)
		priv.Y.SetBytes(k.Y)
		priv.D.SetBytes(k.D)

		return priv, nil
	case AlgorithmEd25519:
		buf := make([]byte, ed25519.PrivateKeySize)

		copy(buf, k.D)
		copy(buf[32:], k.X)

		return ed25519.PrivateKey(buf), nil
	default:
		return nil, ErrAlgorithmNotSupported
	}
}

// AlgorithmOrDefault returns the Algorithm associated with Key. If Key.Algorithm is
// set, that is what is returned. Otherwise, the algorithm is inferred using
// Key.Curve. This method does NOT validate that Key.Algorithm, if set, aligns
// with Key.Curve.
func (k *Key) AlgorithmOrDefault() (Algorithm, error) {
	if k.Algorithm != AlgorithmInvalid {
		return k.Algorithm, nil
	}

	return k.deriveAlgorithm()
}

// Signer returns a Signer created using Key.
func (k *Key) Signer() (Signer, error) {
	if err := k.Validate(); err != nil {
		return nil, err
	}

	if k.KeyOps != nil {
		signFound := false

		for _, kop := range k.KeyOps {
			if kop == KeyOpSign {
				signFound = true
				break
			}
		}

		if !signFound {
			return nil, ErrSignOpNotSupported
		}
	}

	priv, err := k.PrivateKey()
	if err != nil {
		return nil, err
	}

	alg, err := k.AlgorithmOrDefault()
	if err != nil {
		return nil, err
	}

	var signer crypto.Signer
	var ok bool

	switch alg {
	case AlgorithmES256, AlgorithmES384, AlgorithmES512:
		signer, ok = priv.(*ecdsa.PrivateKey)
		if !ok {
			return nil, ErrInvalidPrivKey
		}
	case AlgorithmEd25519:
		signer, ok = priv.(ed25519.PrivateKey)
		if !ok {
			return nil, ErrInvalidPrivKey
		}
	default:
		return nil, ErrAlgorithmNotSupported
	}

	return NewSigner(alg, signer)
}

// Verifier returns a Verifier created using Key.
func (k *Key) Verifier() (Verifier, error) {
	if err := k.Validate(); err != nil {
		return nil, err
	}

	if k.KeyOps != nil {
		verifyFound := false

		for _, kop := range k.KeyOps {
			if kop == KeyOpVerify {
				verifyFound = true
				break
			}
		}

		if !verifyFound {
			return nil, ErrVerifyOpNotSupported
		}
	}

	pub, err := k.PublicKey()
	if err != nil {
		return nil, err
	}

	alg, err := k.AlgorithmOrDefault()
	if err != nil {
		return nil, err
	}

	return NewVerifier(alg, pub)
}

// deriveAlgorithm derives the intended algorithm for the key from its curve.
// The deriviation is based on the recommendation in RFC8152 that SHA-256 is
// only used with P-256, etc. For other combinations, the Algorithm in the Key
// must be explicitly set,so that this derivation is not used.
func (k *Key) deriveAlgorithm() (Algorithm, error) {
	switch k.KeyType {
	case KeyTypeEC2, KeyTypeOKP:
		switch k.Curve {
		case CurveP256:
			return AlgorithmES256, nil
		case CurveP384:
			return AlgorithmES384, nil
		case CurveP521:
			return AlgorithmES512, nil
		case CurveEd25519:
			return AlgorithmEd25519, nil
		default:
			return AlgorithmInvalid, fmt.Errorf("unsupported curve %q", k.Curve.String())
		}
	default:
		// Symmetric algorithms are not supported in the current inmplementation.
		return AlgorithmInvalid, fmt.Errorf("unexpected key type %q", k.KeyType.String())
	}
}